• Title/Summary/Keyword: hydrogen masers

Search Result 5, Processing Time 0.023 seconds

Prediction of Hydrogen Masers' Behaviors Against UTCr with R

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.2
    • /
    • pp.89-98
    • /
    • 2020
  • Prediction of clock behaviors is necessary to generate very high stable system time which is essential for a satellite navigation system. For the purpose, we applied the Auto-Regressive Integrated Moving Average (ARIMA) model to the prediction of two hydrogen masers' behaviors with respect to the rapid Coordinated Universal Time (UTCr). Using the packaged programming language R, we made an analysis and prediction of time series data of [UTCr - clocks]. The maximum variation width of the residuals which were obtained by the difference between the predicted and measured values, was 6.2 ns for 106 days. This variation width was just one-sixth of [UTCr-UTC (KRIS)] published by the BIPM for the same period. Since the two hydrogen masers were found to be strongly correlated, we applied the Vector Auto-Regressive Moving Average (VARMA) model for more accurate prediction. The result showed that the prediction accuarcy was improved by two times for one hydrogen maser.

Kalman Filter-Based Ensemble Timescale with 3- Hydrogen Masers

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.261-272
    • /
    • 2020
  • A Kalman filter algorithm is used for the generation of an ensemble timescale with three hydrogen masers maintained in KRISS. Allan deviation curves of three pairs of clocks were obtained by a three-cornered hat method and were used as reference curves for determination of parameters of the Kalman filter-based timescale. The ensemble timescale equation of a 3-clock system was established, and the clocks' phases estimated by the Kalman filter were used as the prediction time of each clock in the equation. The weight of each clock was determined inversely proportional to the Allan variance calculated with the clocks' phases. The Allan deviation of the weighted mean was 1.2×10-16 at the averaging time of 57,600 s. However when we made fine adjustments of the clocks' weight, the minimum Allan deviation of 2×10-17 was obtained. To find out the reason of the great improvement in the frequency stability, additional researches are in progress theoretically and experimentally.

Comparison of AT1- and Kalman Filter-Based Ensemble Time Scale Algorithms

  • Lee, Ho Seong;Kwon, Taeg Yong;Lee, Young Kyu;Yang, Sung-hoon;Yu, Dai-Hyuk;Park, Sang Eon;Heo, Myoung-Sun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.10 no.3
    • /
    • pp.197-206
    • /
    • 2021
  • We compared two typical ensemble time scale algorithms; AT1 and Kalman filter. Four commercial atomic clocks composed of two hydrogen masers and two cesium atomic clocks provided measurement data to the algorithms. The allocation of relative weights to the clocks is important to generate a stable ensemble time. A 30 day-average-weight model, which was obtained from the average Allan variance of each clock, was applied to the AT1 algorithm. For the reduced Kalman filter (Kred) algorithm, we gave the same weights to the two hydrogen masers. We also compared the frequency stabilities of the outcome from the algorithms when the frequency offsets and/or the frequency drift offsets estimated by the algorithms were corrected or not corrected by the KRISS-made primary frequency standard, KRISS-F1. We found that the Kred algorithm is more effective to generate a stable ensemble time scale in the long-term, and the algorithm also generates much enhanced short-term stability when the frequency offset is used for the calculation of the Allan deviation instead of the phase offset.

INTENSITY VARIATION OF THE SiO MASER LINE OF LONG PERIOD VARIABLES : MASER PUMPING MECHANISM (장주기 변광성의 SiO 메이저 선 세기 변화 연구 : 메이저 펌핑 기작)

  • Kim, Eun-Hyeok;Lee, Sang-Gak
    • Publications of The Korean Astronomical Society
    • /
    • v.8 no.1
    • /
    • pp.83-104
    • /
    • 1993
  • In principle, both radiation and collision are capable of pumping the SiO masers. In order to check which pumping mechanism is more efficient, we calculated the rate equation for our model including the 3 vibrational slates with 7 rotational states of each vibrational slate. Through solving the radiative transfer equation with the Sovolev approximation, we estimated the line profiles from an expanding envelope for several transitions. It is found that the collision works more efficiently than the radiation for the inversion in excited vibrational stales. However in an expanding envelope model we could not get the strong line intensity as observed one because the population inversion is possible only in a small restricted region. For the enough population inversion to get type observed maser intensity. the number density of SiO and hydrogen molecules should be up to about $2{\times}10^5\;cm^{-3}$ and $1{\times}10^9\;cm^{-3}$, respectively, and the inversion should be occured in the region of no Jess than 11014cm.

  • PDF

High-resolution near-IR Spectral Mapping of Multiple Outflows around LkHα 234 in NGC 7129 Star Forming Region

  • Oh, Heeyoung;Pyo, Tae-Soo;Koo, Bon-Chul;Yuk, In-Soo;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2017
  • We present the observational study toward the multiple outflows around $LkH{\alpha}$ 234 star formation region. The high-resolution, near-IR spectral mapping using the Immersion Grating Infrared Spectrograph (IGRINS) allowed us to distinguish at least four separate outflows with the molecular hydrogen ($H_2$) and forbidden iron ([Fe II]) emission lines. The outflow associated with the radio continuum source VLA 3B is detected in both H2 and [Fe II] emission, while the outflows driven by MM 1, VLA 2 sources were only detected in $H_2$, indicating the different physical conditions of outflows. We confirm the axis of VLA 3B jet, the position angle of ${\sim}240^{\circ}$. We firstly identified the redshifted, near-IR H2 outflow associated with VLA 2, which is coincident with the previous detections of $H_2O$ masers. From the $H_2$ line ratios, we interpret the gas properties of the shock excited blue- and redshifted components, and UV excited surrounding photodissociation region. We also discuss the origin of the high-velocity (|VLSR| > $150km\;s^{-1}$) $H_2$ emission.

  • PDF