• Title/Summary/Keyword: infinitely many solutions

Search Result 28, Processing Time 0.034 seconds

INFINITELY MANY SOLUTIONS FOR FRACTIONAL SCHRÖDINGER EQUATION WITH SUPERQUADRATIC CONDITIONS OR COMBINED NONLINEARITIES

  • Timoumi, Mohsen
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.825-844
    • /
    • 2020
  • We obtain infinitely many solutions for a class of fractional Schrödinger equation, where the nonlinearity is superquadratic or involves a combination of superquadratic and subquadratic terms at infinity. By using some weaker conditions, our results extend and improve some existing results in the literature.

INFINITELY MANY SMALL ENERGY SOLUTIONS FOR EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN IN ℝN

  • Kim, Yun-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1269-1283
    • /
    • 2018
  • We are concerned with elliptic equations in ${\mathbb{R}}^N$, driven by a non-local integro-differential operator, which involves the fractional Laplacian. The main aim of this paper is to prove the existence of small solutions for our problem with negative energy in the sense that the sequence of solutions converges to 0 in the $L^{\infty}$-norm by employing the regularity type result on the $L^{\infty}$-boundedness of solutions and the modified functional method.

INFINITELY MANY HOMOCLINIC SOLUTIONS FOR DAMPED VIBRATION SYSTEMS WITH LOCALLY DEFINED POTENTIALS

  • Selmi, Wafa;Timoumi, Mohsen
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.693-703
    • /
    • 2022
  • In this paper, we are concerned with the existence of infinitely many fast homoclinic solutions for the following damped vibration system $$(1){\hspace{32}}{\ddot{u}}(t)+q(t){\dot{u}}(t)-L(t)u(t)+{\nabla}W(t,u(t))=0,\;{\forall}t{\in}{\mathbb{R}},$$ where q ∈ C(ℝ, ℝ), L ∈ C(ℝ, ${\mathbb{R}}^{N^2}$) is a symmetric and positive definite matix-valued function and W ∈ C1(ℝ×ℝN, ℝ). The novelty of this paper is that, assuming that L is bounded from below unnecessarily coercive at infinity, and W is only locally defined near the origin with respect to the second variable, we show that (1) possesses infinitely many homoclinic solutions via a variant symmetric mountain pass theorem.

INFINITELY MANY SOLUTIONS OF A WAVE EQUATION WITH JUMPING NONLINEARITY

  • Park, Q-Heung;Jung, Tack-Sun
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.6
    • /
    • pp.943-956
    • /
    • 2000
  • We investigate a relation between multiplicity of solutions and source terms of jumping problem in wave equation when the nonlinearity crosses an eigenvalue and the source term is generated by finite eigenfunctions. We also show that the jumping problem has infinitely many solutions when the source term is positive multiple of the positve eigenfunction.

  • PDF

INFINITELY MANY SOLUTIONS FOR (p(x), q(x))-LAPLACIAN-LIKE SYSTEMS

  • Heidari, Samira;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.1
    • /
    • pp.51-62
    • /
    • 2021
  • Variational method has played an important role in solving problems of uniqueness and existence of the nonlinear works as well as analysis. It will also be extremely useful for researchers in all branches of natural sciences and engineers working with non-linear equations economy, optimization, game theory and medicine. Recently, the existence of infinitely many weak solutions for some non-local problems of Kirchhoff type with Dirichlet boundary condition are studied [14]. Here, a suitable method is presented to treat the elliptic partial derivative equations, especially (p(x), q(x))-Laplacian-like systems. This kind of equations are used in the study of fluid flow, diffusive transport akin to diffusion, rheology, probability, electrical networks, etc. Here, the existence of infinitely many weak solutions for some boundary value problems involving the (p(x), q(x))-Laplacian-like operators is proved. The method is based on variational methods and critical point theory.

INFINITELY MANY SOLUTIONS FOR A CLASS OF THE ELLIPTIC SYSTEMS WITH EVEN FUNCTIONALS

  • Choi, Q-Heung;Jung, Tacksun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.821-833
    • /
    • 2017
  • We get a result that shows the existence of infinitely many solutions for a class of the elliptic systems involving subcritical Sobolev exponents nonlinear terms with even functionals on the bounded domain with smooth boundary. We get this result by variational method and critical point theory induced from invariant subspaces and invariant functional.

EXISTENCE OF INFINITELY MANY SOLUTIONS OF THE NONLINEAR HIGHER ORDER ELLIPTIC EQUATION

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.309-322
    • /
    • 2008
  • We prove the existence of infinitely many solutions of the nonlinear higher order elliptic equation with Dirichlet boundary condition $(-{\Delta})^mu=q(x,u)$ in ${\Omega}$, where $m{\geq}1$ is an integer and ${\Omega}{\subset}{R^n}$ is a bounded domain with smooth boundary, when q(x,u) satisfies some conditions.

  • PDF

THE FRACTIONAL SCHRÖDINGER-POISSON SYSTEMS WITH INFINITELY MANY SOLUTIONS

  • Jin, Tiankun;Yang, Zhipeng
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.489-506
    • /
    • 2020
  • In this paper, we study the existence of infinitely many large energy solutions for the supercubic fractional Schrödinger-Poisson systems. We consider different superlinear growth assumptions on the non-linearity, starting from the well-know Ambrosetti-Rabinowitz type condition. We obtain three different existence results in this setting by using the Fountain Theorem, all these results extend some results for semelinear Schrödinger-Poisson systems to the nonlocal fractional setting.

EXISTENCE OF INFINITELY MANY SOLUTIONS FOR A CLASS OF NONLOCAL PROBLEMS WITH DIRICHLET BOUNDARY CONDITION

  • Chaharlang, Moloud Makvand;Razani, Abdolrahman
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.155-167
    • /
    • 2019
  • In this article we are concerned with some non-local problems of Kirchhoff type with Dirichlet boundary condition in Orlicz-Sobolev spaces. A result of the existence of infinitely many solutions is established using variational methods and Ricceri's critical points principle modified by Bonanno.

INFINITELY MANY SMALL SOLUTIONS FOR THE p(x)-LAPLACIAN OPERATOR WITH CRITICAL GROWTH

  • Zhou, Chenxing;Liang, Sihua
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.137-152
    • /
    • 2014
  • In this paper, we prove, in the spirit of [3, 12, 20, 22, 23], the existence of infinitely many small solutions to the following quasilinear elliptic equation $-{\Delta}_{p(x)}u+{\mid}u{\mid}^{p(x)-2}u={\mid}u{\mid}^{q(x)-2}u+{\lambda}f(x,u)$ in a smooth bounded domain ${\Omega}$ of ${\mathbb{R}}^N$. We also assume that $\{q(x)=p^*(x)\}{\neq}{\emptyset}$, where $p^*(x)$ = Np(x)/(N - p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountainpass lemma due to Kajikiya [22], and property of these solutions are also obtained.