• Title/Summary/Keyword: lead aerosol

Search Result 24, Processing Time 0.028 seconds

Design of Aerosol Generator for Inhalation Toxicology Study of Lead and Evaluation with Real Time Monitoring (납의 흡입독성 연구를 위한 에어로졸 발생장치의 고안 및 실시간 모니터링을 이용한 성능평가)

  • Jeung Jae Yeal;Kim Jung Man;Kim Tae Hyeung;Chong Myoung Soo;Ko Kwang Jae;Kim Sang Duck;Kang Sung Ho;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.2
    • /
    • pp.373-379
    • /
    • 2002
  • This paper was the design of aerosol generator for inhalation toxicology study of lead and evaluation with real time monitoring, and applied several engineering methodology to classical aerosol generator to cope with it's disadvantages. According to the testing conditions, source temperature 50℃ and inlet-duct band heater temperature 150℃, aerosol generation results for sodium chloride and lead acetate were as followings: CPM(Count Per Minute) for Sodium chloride that used for the testing material in aerosol generation and inhalation system was decreased in the 2nd and the 3rd hour's serial trials, but CVs(coefficient of variation) were maintained within 10%. CPMs for 5 and 2.5 gram of lead acetate that used for aerosol generation and inhalation exposure of lead showed similar results because of the sedimentation of lead acetate on piezoelectric crystal with time. For that reason, heating and mixing of nebulizing solution will be needed to generate lead aerosol with stable profile and maximum generation efficiency. Fluctuations of 10 and 5 gram lead acetate were low but 2.5gram was high. However, CVs for 10, 5, and 2.5gram lead acetate were within 10%. Considering the theoretical efficiencies for sodium chloride and lead acetate, 5gram sodium chloride and 2.5gram lead acetate were appropriate choice. Aerosol generation characteristics for two materials with 1 hour interval were different with respect to the fluctuation of CPM and the decrease to 10gram in it's material. For that reason, sodium chloride can not be used to estimate the aerosol generation and it's related parts for lead acetate. According to the testing conditions, source temperature 20, 50, 70℃, and inlet-duct band heater temperature 20, 50, 100, 150, 200℃, aerosol generation results for sodium chloride and lead acetate were as followings: Excluding inlet-duct band temperature 200℃, maximum CPM for sodium chloride was manifested in source temperature 70℃ with each inlet-duct band temperature conditions. We suggest that this condition was the optimum in the design of aerosol generator, inhalation system, and the testing. Maximum CPMs for 10, 5, and 2.5gram sodium chloride were from source temperature 70℃ and inlet-duct band temperature 20℃. Excluding inlet-duct band temperature 50, 200℃, maximum CPMs for lead acetate were indicated in source temperature 50℃ with each inlet-duct band temperature conditions. We suggest that this condition was the optimum in the design of aerosol generator, inhalation system, and the testing for lead inhalation study. Source and inlet-duct band temperatures for 10, 5, 2.5gram lead acetate were 50 and 100℃, 50 and 100℃, 50 and 150℃, respectively. In conclusion, considering above 2 paragraphs of results for aerosol generation, 5gram efficiencies for sodium chloride, lead acetate were higher than 2.5gram's. If inlet-duct band temperature was same, aerosol generation was increased with increase of source temperature. To get maximum aerosol generation will be the conditions that set the appropriate inlet-duel band temperature for each materials and increase the source temperature.

Single-particle Characterization of Aerosol Particles Collected Nearby a Lead Smelter in China

  • Jung, Hae-Jin;Song, Young-Chul;Liu, Xiande;Li, Yuwu;Ro, Chul-Un
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.2
    • /
    • pp.83-95
    • /
    • 2012
  • China has been a top producer and exporter of refined lead products in the world since the year 2000. After the phasing-out of leaded gasoline in the late 1990s, non-ferrous metallurgy and coal combustion have been identified as potential major sources of aerosol lead in China. This paper presents the single particle analytical results of ambient aerosol particles collected near a lead smelter using a scanning electron microscopy- energy dispersive x-ray spectroscopy (SEM-EDX). Aerosol particle samples were collected over a 24-hour period, starting from 8 pm on 31 May 2002, using a high volume TSP sampler. For this near source sample, 73 particles among 377 particles analyzed (accounting for 19.4%) were lead-containing particles mixed with other species (S, Cl, K, Ca, and/or C), which probably appeared to be from a nearby lead smelter. Lead-containing particles of less than $2{\mu}m$ size in the near source sample were most frequently encountered with the relative abundances of 42%. SEM-EDX analysis of individual standard particles, such as PbO, PbS, $PbSO_4$, $PbCl_2$, and $PbCO_3$, was also performed to assist in the clear identification of lead-containing aerosol particles. Lead-containing particles were frequently associated with arsenic and zinc, indicating that the smelter had emitted those species during the non-ferrous metallurgical process. The frequently encountered particles following the lead-containing particles were mineral dust particles, such as aluminosilicates (denoted as AlSi), $SiO_2$, and $CaCO_3$. Nitrate- and sulfate-containing particles were encountered frequently in $2-4{\mu}m$ size range, and existed mostly in the forms of $Ca(NO_3,SO_4)/C$, $(Mg,Ca)SO_4/C$, and $AlSi+(NO_3,SO_4)$. Particles containing metals (e.g., Fe, Cu, and As) in this near source sample had relative abundances of approximately 10%. Although the airborne particles collected near the lead smelter contained elevated levels of lead, other types of particles, such as $CaCO_3$-containing, carbonaceous, metal-containing, nitrates, sulfates, and fly-ash particles, showed the unique signatures of samples influenced by emissions from the lead smelter.

Particle Size Analysis of Lead Aerosol with the use of 2730ppm Lead Nebulizing Solution for Inhalation Toxicology Study (흡입독성 연구를 위한 2730ppm 납 네뷸라이징 용액에서 발생된 에어로졸의 입경분석)

  • Jeung Jae Yeal;Kang Sung Ho;Kim Sam Tae;Lee Eun Kyoung;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.2
    • /
    • pp.518-524
    • /
    • 2003
  • Ultrasonic nebulizer with the application of new engineering methodology and the design of electronic circuit was made for lead inhalation toxicology study and 2730ppm lead nebulizing solution was used to generate lead aerosol. After modification of source and inlet temperatures, the results of particle size analysis for lead aerosol were as following. The highest particle counting for source temperature 20℃ was 39933.66 in inlet temperature 100℃ and particle diameter 0.75tLm. The highest particle counting for source temperature 50℃ was 39992.71 in inlet temperature 250℃ and particle diameter 0.75μm. The highest particle counting for source temperature 70℃ was 37569.55 in inlet temperature 50℃ and particle diameter 0.75μm. The ranges of geometric mean diameter(GMD) were 0.754-0.784μm for source temperature 2℃, 0.758-0.852μm for source temperature 50℃, and 0.869-1.060μm for source temperature 70℃. The smallest GMD was 0.754μm in source temperature 20℃ and inlet temperature 20℃, and the largest GMD was 1.060μm in source temperature 70℃ and inlet temperature 250℃. The ranges of geometric standard deviation(GSD) were 1.730-1.782 for source temperature 20℃, 1.734-1.894 for source temperature 50℃, and 1.921-2.148 for source temperature 70℃. The lowest GSD was 1.730 in source temperature 20℃ and inlet temperature 20℃, and the highest GSD was 2.148 in source temperature 70℃ and inlet temperature 250℃. Lead aerosol generated in this study was polydisperse. The ranges of mass median diameter(MMD) were 1.856-2.133μm for source temperature 20℃, 1.877-2.894μm for source temperature 50℃, and 3.120-6.109μm for source temperature 70℃. The smallest MMD was 1.856μm in source temperature 20℃ and inlet temperature 20℃, and the largest MMD was 6.109μm in source temperature 70℃ and inlet temperature 250℃. Slight increases for GMD, GSD, and MMD values were observed with same source temperature and increase of inlet temperature. MMD for inhalation toxicology testing in EPA guidance is less than 4μm. In this study, source temperature 20℃ and 50℃ with inlet temperature from 20℃ to 250℃ were conformed to the EPA guidance, but inlet temperature 20℃ and 50℃ for source temperature 70℃ were conformed EPA guidance. MMD for inhalation toxicology testing in OECD and EU is less than 3μm. In this study, source temperature 20℃ and 50℃ with inlet temperature from 20℃ to 250℃ were conformed to the EPA guidance, but none for source temperature 70℃.

Particle-size-dependent aging time scale of atmospheric black carbon (입자 크기의 함수로 나타낸 대기 중 블랙카본의 변성시간척도)

  • Park, Sung Hoon
    • Particle and aerosol research
    • /
    • v.5 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • Black carbon, which is a by-product of combustion of fossil fuel and biomass burning, is the component that imposes the largest uncertainty on quantifying aerosol climate effect. The direct, indirect and semi-direct climate effects of black carbon depend on its state of the mixing with other water-soluble aerosol components. The process that transforms hydrophobic externally mixed black carbon particles into hygroscopic internally mixed ones is called "aging". In most climate models, simple parameterizations for the aging time scale are used instead of solving detailed dynamics equations on the aging process due to the computation cost. In this study, a new parameterization for the black carbon aging time scale due to condensation and coagulation is presented as a function of the concentration of hygroscopic atmospheric components and the black carbon particle size. It is shown that the black carbon aging time scale due to condensation of sulfuric acid vapors varies to a large extent depending on the sulfuric acid concentration and the black carbon particle size. This result indicates that the constant aging time scale values suggested in the literature cannot be directly applied to a global scale modeling. The aging time scale due to coagulation with internally mixed aerosol particles shows an even stronger dependency on particle size, which implies that the use of a particle-size-independent aging time scale may lead to a large error when the aging is dominated by coagulation.

  • PDF

Synthesis of Porous Graphene Balls by the Activation and Aerosol Process for Supercapacitors Application (활성화 및 에어로졸 공정에 의한 다공성 그래핀 볼 제조 및 슈퍼커패시터 응용)

  • Lee, Chongmin;Chang, Hankwon;Jang, Hee Dong
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.183-190
    • /
    • 2019
  • Here, we introduce porous graphene balls (PGB) showing superior electrochemical properties as supercapacitor electrode materials. PGB was fabricated via activation of graphene oxides (GO) by H2O2 and aerosol spray drying in series. Effect of activation on the morphology, specific surface area, pore volume, and electrochemical properties were investigated. As-prepared PGB showed spherical morphology containing pores, which lead to the effective prevention of restacking in graphene sheets. It also exhibited a large surface area, unique porous structures, and high electrical conductivity. The electrochemical properties of the PGB as electrode materials of supercapacitor are investigated by using aqueous KOH under symmetric two-electrode system. The highest specific capacitance of PGB was 279 F/g at 0.1 A/g. In addition, the high rate capability (93.8% retention) and long-term cycling stability (92.2%) of the PGB were found due to the facilitated ion mobility between the porous graphene layers.

Annual Variation of Atmospheric Lead Concentration in Seoul(1984-1993) (서울 대기중 납농도의 연도별 변화(1984-1993))

  • 이동수;이용근;허주원;이상일;손동헌;김만구
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.170-174
    • /
    • 1994
  • Atmospheric lead concentrations in Seoul were monitored for ten years from January 1984 to June 1993 using X-ray fluorescence Spectrometer. 342 aerosol samples were collected using high volume samplers at two sites : one at Chungang University campus from 1984 to 1988 and the other at Yonsei University campus from 1989 to 1993. Lead concentration increased steadily from about 300ng/㎥ to the maximum of about 600ng/㎥ in 1988 and then decreased, and this is similar to the pattern of Korean leaded gasoline sales implying that Korean automobile emission is the main source. However, the emission from nation's coal combustion appeared to be substantial as welt, and this emmision is the major cause for the secondary feature strong seasonal variability. Lead concentration varied systematically from season to season, low in summer and high in winter. The region's characteristic climate, frequent and heavy precipitations in summer and dry in winter is considered to be another cause for the seasonal variability.

  • PDF

Electrical properties of PZN-PZT thick films formed by aerosol deposition process (에어로졸 증착법에 의해 제조된 PZN-PZT 후막의 전기적특성)

  • Tungalaltamir, Ochirkhuyag;Jang, Joo-Hee;Park, Yoon-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.5
    • /
    • pp.183-188
    • /
    • 2020
  • Lead zinc niobate (PZN)-added lead zirconate titanate (PZT) thick films with thickness of 5~10 ㎛ were fabricated on silicon and sapphire substrates using aerosol deposition method. The contents of PZN were varied from 0 %, 20 % and to 40 %. The PZN-added PZT film showed poorer electrical properties than pure PZT film when the films were coated on silicon substrate and annealed at 700℃. On the other hand, the PZN-added PZT film showed higher remanent polarization and dielectric constant values than pure PZT film when the films were coated on sapphire and annealed at 900℃. The ferroelectric and dielectric characteristics of 20 % PZN-added PZT films annealed at 900℃ were compared with the result values obtained from bulk ceramic specimen with same composition sintered at 1200℃. As annealing temperature increased, dielectric constant increased. These came from enhanced crystallization and grain growth by post heat treatment.

Effect of PZN addition on microstructure of PZT thick films by aerosol deposition process (에어로졸 증착법에 의한 PZT 후막의 미세구조에 미치는 PZN 첨가의 영향)

  • Jang, Joo-Hee;Park, Yoon-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.1
    • /
    • pp.14-20
    • /
    • 2018
  • Lead zinc niobate (PZN) added lead zirconate titanate (PZT) thick films with thickness of $5{\sim}10{\mu}m$ were fabricated on silicon and sapphire substrates using aerosol deposition method. The contents of PZN were varied from 0 %, 20 % and 40 %. The initial particles (PZT, 2PZN-8PZT, 4PZN-6PZT) had irregular shape and submicron sizes. The as-deposited film had fairly dense microstructure without any crack, and showed only a perovskite single phase formed with nano-sized grains. The as-deposited films on silicon were annealed at the temperatures of $700^{\circ}C$, and the films deposited on sapphire were annealed at $900^{\circ}C$ in the electrical furnace. The effects of PZN addition on the microstructural evolution were observed using by FE-SEM and HR-TEM.

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy (우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.

Fabrication of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 제조)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Lead zirconate titanate (PZT) thick films with a thickness of $10-20{\mu}m$ were fabricated on silicone substrates using an aerosol deposition method. The starting powder, which had diameters of $1-2{\mu}m$, was observed using SEM. The average diameter ($d_{50}$) was $1.1{\mu}m$. An XRD analysis showed a typical perovskite structure, a mixture of the tetragonal phase and rhombohedral phase. The as-deposited film with nano-sized grains had a fairly dense microstructure without any cracks. The deposited film showed a mixture of an amorphous phase and a very fine crystalline phase by diffraction pattern analysis using TEM. The as-deposited films on silicon were annealed at a temperature of $700^{\circ}C$. A 20-${\mu}m$ thick PZT film was torn out as a result of the high compressive stress between the PZT film and substrate.