• Title/Summary/Keyword: mTOR

검색결과 282건 처리시간 0.027초

The functions of mTOR in ischemic diseases

  • Hwang, Seo-Kyoung;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.506-511
    • /
    • 2011
  • Mammalian Target of Rapamycin (mTOR) is a serine/threonine kinase and that forms two multiprotein complexes known as the mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). mTOR regulates cell growth, proliferation and survival. mTORC1 is composed of the mTOR catalytic subunit and three associated proteins: raptor, mLST8/$G{\beta}L$ and PRAS40. mTORC2 contains mTOR, rictor, mLST8/$G{\beta}L$, mSin1, and protor. Here, we discuss mTOR as a promising anti-ischemic agent. It is believed that mTORC2 lies down-stream of Akt and acts as a direct activator of Akt. The different functions of mTOR can be explained by the existence of two distinct mTOR complexes containing unique interacting proteins. The loss of TSC2, which is upstream of mTOR, activates S6K1, promotes cell growth and survival, activates mTOR kinase activities, inhibits mTORC1 and mTORC2 via mTOR inhibitors, and suppresses S6K1 and Akt. Although mTOR signaling pathways are often activated in human diseases, such as cancer, mTOR signaling pathways are deactivated in ischemic diseases. From Drosophila to humans, mTOR is necessary for Ser473 phosphorylation of Akt, and the regulation of Akt-mTOR signaling pathways may have a potential role in ischemic disease. This review evaluates the potential functions of mTOR in ischemic diseases. A novel mTOR-interacting protein deregulates over-expression in ischemic disease, representing a new mechanism for controlling mTOR signaling pathways and potential therapeutic strategies for ischemic diseases.

Roles of mTOR and p-mTOR in Gastrointestinal Stromal Tumors

  • Li, Jun-Chuan;Zhu, Hong-Yu;Chen, Ting-Xuan;Zou, Lan-Ying;Wang, Xiao-Yan;Zhao, Hui-Chuan;Xu, Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권10호
    • /
    • pp.5925-5928
    • /
    • 2013
  • Objective: This study aimed to examine the relationship between expression of mammal target of rapamycin (mTOR) and phosphorylation of mTOR (p-mTOR) protein in the PI3K/Akt/mTOR signaling pathways in gastrointestinal stromal tumors and relatiuonships with clinical factors. Methods: Immunohistochemistry was used to detect the expression of the associated proteins mTOR, p-mTOR, and phosphorylation of the tumor suppressor genes PTEN, P27, VEGF, and EGFR in 40 cases of gastrointestinal stromal tumors, with division into a very low and low risk group as well as a moderate and high risk group. Results: The positive rate of mTOR and p-mTOR was significantly increased in the moderate and high risk group compared with the very low and low risk group. The difference was statistically significant (P<0.05). When grouped according to size, the positive mTOR expression rate exhibited a statistical difference (P<0.05), which was significantly increased in the group of tumors larger than 5 cm. The difference in the positive mTOR and p-mTOR expression rate exhibit no statistical significance among the PTEN, P27, VEGF, and EGFR expression subgroups (P>0.05). Conclusion: The different expressions of mTOR and p-mTOR in the signal transduction pathway of gastrointestinal stromal tumor in the different degree-of-risk groups suggested that the mTOR and p-mTOR of the signal transduction pathway serve an important function in the occurrence and development of gastrointestinal stromal tumors.

Mechanistic Target of Rapamycin Pathway in Epileptic Disorders

  • Kim, Jang Keun;Lee, Jeong Ho
    • Journal of Korean Neurosurgical Society
    • /
    • 제62권3호
    • /
    • pp.272-287
    • /
    • 2019
  • The mechanistic target of rapamycin (mTOR) pathway coordinates the metabolic activity of eukaryotic cells through environmental signals, including nutrients, energy, growth factors, and oxygen. In the nervous system, the mTOR pathway regulates fundamental biological processes associated with neural development and neurodegeneration. Intriguingly, genes that constitute the mTOR pathway have been found to be germline and somatic mutation from patients with various epileptic disorders. Hyperactivation of the mTOR pathway due to said mutations has garnered increasing attention as culprits of these conditions : somatic mutations, in particular, in epileptic foci have recently been identified as a major genetic cause of intractable focal epilepsy, such as focal cortical dysplasia. Meanwhile, epilepsy models with aberrant activation of the mTOR pathway have helped elucidate the role of the mTOR pathway in epileptogenesis, and evidence from epilepsy models of human mutations recapitulating the features of epileptic patients has indicated that mTOR inhibitors may be of use in treating epilepsy associated with mutations in mTOR pathway genes. Here, we review recent advances in the molecular and genetic understanding of mTOR signaling in epileptic disorders. In particular, we focus on the development of and limitations to therapies targeting the mTOR pathway to treat epileptic seizures. We also discuss future perspectives on mTOR inhibition therapies and special diagnostic methods for intractable epilepsies caused by brain somatic mutations.

Prognostic Value of Phosphorylated mTOR/RPS6KB1 in Non-small Cell Lung Cancer

  • Zhang, Yong;Ni, Huan-Juan;Cheng, De-Yun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권6호
    • /
    • pp.3725-3728
    • /
    • 2013
  • Background: The mammalian target of rapamycin (mTOR) /RPS6KB1 activation has recently been implicated in tumour development, but its role in lung cancer remains unclear. The aim of this study was to explore the role of mTOR/RPS6KB1 signaling pathway in non-small-cell lung cancer (NSCLC). Methods: Immunohistochemistry was performed to assess the expression of phosphorylated mammalian target of rapamycin (p-mTOR) and its downstream ribosomal phosphorylated RPS6KB1 (p-RPS6KB1) in NSCLC patients. We also analyzed p-mTOR/p-RPS6KB1 protein expression in 45 fresh NSCLC tissues using Western blotting. Results: The expression level of p-mTOR and p-RPS6KB1 was significantly higher in NSCLC tumor specimens than that in adjacent noncancerous normal lung tissues (P<0.01). p-mTOR expression correlated with p-RPS6KB1. Furthermore, high expression level of p-mTOR or p-RPS6KB1 in NSCLC was associated with a shorter overall survival (both P<0.01). Multivariate analysis indicated high level of p-mTOR expression was an independent prognostic factor (HR=2.642, 95%CI 1.157-4.904, p=0.002). Conclusions: p-mTOR and p-RPS6KB1 could be useful prognostic markers for NSCLC.

Rapamycin-resistant and torin-sensitive mTOR signaling promotes the survival and proliferation of leukemic cells

  • Park, Seohyun;Sim, Hyunsub;Lee, Keunwook
    • BMB Reports
    • /
    • 제49권1호
    • /
    • pp.63-68
    • /
    • 2016
  • The serine/threonine kinase mTOR is essential for the phosphoinositide 3-kinases (PI3K) signaling pathway, and regulates the development and function of immune cells. Aberrant activation of mTOR signaling pathway is associated with many cancers including leukemia. Here, we report the contributions of mTOR signaling to growth of human leukemic cell lines and mouse T-cell acute leukemia (T-ALL) cells. Torin, an ATP-competitive mTOR inhibitor, was found to have both cytotoxic and cytostatic effects on U-937, THP-1, and RPMI-8226 cells, but not on Jurkat or K-562 cells. All cells were relatively resistant to rapamycin even with suppressed activity of mTOR complex 1. Growth of T-ALL cells induced by Notch1 was profoundly affected by torin partially due to increased expression of Bcl2l11 and Bbc3. Of note, activation of Akt or knockdown of FoxO1 mitigated the effect of mTOR inhibition on T-ALL cells. Our data provide insight on the effect of mTOR inhibitors on the survival and proliferation of leukemic cells, thus further improving our understanding on cell-context-dependent impacts of mTOR signaling. [BMB Reports 2016; 49(1): 63-68]

The mTOR Signalling Pathway in Cancer and the Potential mTOR Inhibitory Activities of Natural Phytochemicals

  • Tan, Heng Kean;Moad, Ahmed Ismail Hassan;Tan, Mei Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권16호
    • /
    • pp.6463-6475
    • /
    • 2014
  • The mammalian target of rapamycin (mTOR) kinase plays an important role in regulating cell growth and cell cycle progression in response to cellular signals. It is a key regulator of cell proliferation and many upstream activators and downstream effectors of mTOR are known to be deregulated in various types of cancers. Since the mTOR signalling pathway is commonly activated in human cancers, many researchers are actively developing inhibitors that target key components in the pathway and some of these drugs are already on the market. Numerous preclinical investigations have also suggested that some herbs and natural phytochemicals, such as curcumin, resveratrol, timosaponin III, gallic acid, diosgenin, pomegranate, epigallocatechin gallate (EGCC), genistein and 3,3'-diindolylmethane inhibit the mTOR pathway either directly or indirectly. Some of these natural compounds are also in the clinical trial stage. In this review, the potential anti-cancer and chemopreventive activities and the current status of clinical trials of these phytochemicals are discussed.

Expression and Clinical Significance of mTOR in Surgically Resected Non-small Cell Lung Cancer Tissues: a Case Control Study

  • Liu, Zhe;Wang, Liang;Zhang, Li-Na;Wang, Yue;Yue, Wen-Tao;Li, Qi
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권12호
    • /
    • pp.6139-6144
    • /
    • 2012
  • Aims: Mammalian target of rapamycin (mTOR) is master regulator of the PI3K/Akt/mTOR pathway and plays an important role in NSCLCs. Here we characterized mRNA and protein expression levels of mTOR and its functional associated molecules including PTEN, IGF-1R and 4EBP1 in surgically resected NSCLCs. Methods: Fifty-four patients with NSCLCs who underwent pulmonary resection were included in current study. mRNA levels of mTOR, PTEN, IGF-1R, and 4EBP1 were evaluated by RT-PCR and protein expression of mTOR, PTEN, and IGF-1R by immunohistochemistry (IHC). Association of expression of the relevant molecules with clinical characteristics, as well as correlations between mTOR and PTEN, 4EBP1 and IGF-1R were also assessed. Results: The results of RT-PCR showed that in NSCLCs, the expression level of mTOR increased, while PTEN, 4EBP1 and IGF-1R decreased. Statistical analysis indicated high IGF-1R expression was correlated with advanced clinical stage (stage III) and PTEN expression was reversely associated with tumor size (P=0.16). The results of IHC showed mTOR positive staining in 51.8% of cases, while IGF-1R positive staining was found in 83.3% and loss of PTEN in 46.3%. Protein expression of mTOR was correlated with its regulators, PTEN and IGF-1R, to some extent. Conclusions: Abnormal activation of mTOR signaling, high expression of IGF-1R, and loss of PTEN were observed in resected NSCLC specimens. The poor expression agreement of mTOR with its regulators, PTEN, and IGF-1R, implied that combination strategy of mTOR inhibitors with other targets hold significant potential for NSCLC treatment.

AR-mTOR-SRF Axis Regulates HMMR Expression in Human Prostate Cancer Cells

  • Sun, You;Li, Zewu;Song, Kyung
    • Biomolecules & Therapeutics
    • /
    • 제29권6호
    • /
    • pp.667-677
    • /
    • 2021
  • The elevated expression of the hyaluronan-mediated motility receptor (HMMR) is known to be highly associated with tumor progression in prostate cancer, but the molecular mechanisms underlying the regulation of HMMR expression remain unclear. Here, we report that mammalian target of rapamycin (mTOR) is a key regulator of HMMR expression, for which its kinase activity is required. Pharmacological inhibitors of mTOR, such as rapamycin and Torin2, markedly suppressed the mRNA level as well as the protein level of HMMR in LNCaP and PC-3 cells. Our data demonstrate that such regulation occurs at the transcription level. HMMR promoter reporter assays revealed that the transcription factor SRF is responsible for the mTOR-mediated transcriptional regulation of HMMR gene. Consistently, the suppression of HMMR expression by Torin2 was noticeably reversed by the overexpression of SRF. Moreover, our findings suggest that the SRF binding sites responsible for the transcriptional regulation of HMMR through the mTOR-SRF axis are located in HMMR promoter sequences carrying the first intron, downstream of the translational start site. Furthermore, the upregulation of HMMR by DHT was abolished by stimulation with rapamycin, prior to DHT treatment, suggesting that mTOR activity is required for the induction of HMMR expression by androgen. Collectively, our study provides new mechanistic insights into the role of mTOR/SRF/AR signaling in HMMR regulation in prostate cancer cells.

대장암과 선종 병변에서 mTOR 신호 단백질의 면역조직화학 염색성 평가 (Evaluation of the Immunohistochemical Staining Pattern of the mTOR Signaling Proteins in Colorectal Cancers and Adenoma Lesions)

  • 김진목;이현욱
    • 대한임상검사과학회지
    • /
    • 제49권4호
    • /
    • pp.470-476
    • /
    • 2017
  • mTOR 신호전달 단백질의 변화는 다양한 종류의 암에서 관찰 되었다. 따라서 이들 단백질은 최근에 암 치료제에 대한 새롭고 흥미로운 표적이 되고 있다. 우리는 대장암과 선종 환자의 mTOR 세포신호의 활성도를 조사하였다. 면역조직화학적 방법으로 대장암과 선종의 세포신호 단백질 성분인 mTOR, p70-S6K, S6, 4EBP1 발현을 분석하였다. 이번 연구는 모두 100개의 예를 악성(Colorectal Adenocarcinoma, CRAC) 40건, 고등급 선종(Adenoma with High grade intraepithelial neoplasms, HIN) 30건, 저등급 선종(Adenoma with Low-grade intraepithelial neoplasms, LIN) 30건으로 분류하여 진행하였다. p-mTOR의 발현률은 LIN 7%, HIN 30%, CRAC 75%였고 p-S6의 발현률 또한 LIN 10%, HIN 27%, CRAC 55%였다. p-mTOR, p-S6의 발현과 선종-선암 연속성은 중요한 상관관계 있다는 것이 발견되었다. 그리고 흥미롭게도 p-S6 발현률은 진행암보다 초기암에서 더 높았다.

Mammalian target of rapamycin inhibitors for treatment in tuberous sclerosis

  • Kim, Won-Seop
    • Clinical and Experimental Pediatrics
    • /
    • 제54권6호
    • /
    • pp.241-245
    • /
    • 2011
  • Tuberous sclerosis complex (TSC) is a genetic multisystem disorder that results from mutations in the TSC1 or TSC2 genes, and is associated with hamartomas in several organs, including subependymal giant cell tumors. The neurological manifestations of TSC are particularly challenging and include infantile spasms, intractable epilepsy, cognitive disabilities, and autism. The TSC1- and TSC2-encoded proteins modulate cell function via the mammalian target of rapamycin (mTOR) signaling cascade, and are key factors in the regulation of cell growth and proliferation. The mTOR pathway provides an intersection for an intricate network of protein cascades that respond to cellular nutrition, energy levels, and growth factor stimulation. In the brain, TSC1 and TSC2 have been implicated in cell body size, dendritic arborization, axonal outgrowth and targeting, neuronal migration, cortical lamination, and spine formation. The mTOR pathway represents a logical candidate for drug targeting, because mTOR regulates multiple cellular functions that may contribute to epileptogenesis, including protein synthesis, cell growth and proliferation, and synaptic plasticity. Antagonism of the mTOR pathway with rapamycin and related compounds may provide new therapeutic options for TSC patients.