• Title/Summary/Keyword: machining feature

Search Result 141, Processing Time 0.022 seconds

Feature-based Extraction of Machining Features (특징형상 접근방법에 의한 가공특징형상 추출)

  • 이재열;김광수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.139-152
    • /
    • 1999
  • This paper presents a feature-based approach to extracting machining features fro a feature-based design model. In the approach, a design feature to machining feature conversion process incrementally converts each added design feature into a machining feature or a set of machining features. The proposed approach an efficiently handle protrusion features and interacting features since it takes advantage of design feature information, design intent, and functional requirements during feature extraction. Protrusion features cannot be directly mapped into machining features so that the removal volumes surrounding protrusion features are extracted and converted it no machining features. By utilizing feature information as well as geometry information during feature extraction, the proposed approach can easily overcome inherent problems relating to feature recognition such as feature interactions and loss of design intent. In addition, a feature extraction process can be simplified, and a large set of complex part can be handled with ease.

  • PDF

Machining Feature Recognition with Intersection Geometry between Design Primitives (설계 프리미티브 간의 교차형상을 통한 가공 피쳐 인식)

  • 정채봉;김재정
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.1
    • /
    • pp.43-51
    • /
    • 1999
  • Producing the relevant information (features) from the CAD models of CAM, called feature recognition or extraction, is the essential stage for the integration of CAD and CAM. Most feature recognition methods, however, have problems in the recognition of intersecting features because they do not handle the intersection geometry properly. In this paper, we propose a machining feature recognition algorithm, which has a solid model consisting of orthogonal primitives as input. The algorithm calculates candidate features and constitutes the Intersection Geometry Matrix which is necessary to represent the spatial relation of candidate features. Finally, it recognizes machining features from the proposed candidate features dividing and growing systems using half space and Boolean operation. The algorithm has the following characteristics: Though the geometry of part is complex due to the intersections of design primitives, it can recognize the necessary machining features. In addition, it creates the Maximal Feature Volumes independent of the machining sequences at the feature recognition stage so that it can easily accommodate the change of decision criteria of machining orders.

  • PDF

A Development of the Tolerance Modeler for Feature-based CAPP (특징형상에 기반한 공정설계를 위한 공차 모델러 개발)

  • 김재관;노형민;이수홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.267-271
    • /
    • 2000
  • A part definition must not only provide shape information of a nominal part but also contain non-shape information such as tolerances, surface roughness and material attributes. Although machining features are useful for suitable shape information for process reasoning in the CAPP, they need to be integrated with tolerance information for effective process planning. We develop the tolerance modeler that efficiently integrates machining features with tolerance information for feature-based CAPP It is based on the association of machining features, tolerance features. and tolerances Tolerance features, where tolerances are assigned, are classified into two types; one is the face that is a topological entity on a solid model and the other is the functional geometry that is not referenced to topological entities. The functional geometry is represented by using machining features All the data for representing tolerance information with machining features are stored completely and unambiguously in the independent tolerance structure. The developed tolerance modeler is implemented as a module of a comprehensive feature-based CAPP system.

  • PDF

Incremental Feature Recognition from Feature-based Design Model (설계특징형상으로부터 가공특징형상 추출)

  • 이재열;김광수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.737-742
    • /
    • 1994
  • In this paper , we propose an incremental approach for recognizing a class of machining features from a featurebased design model as a part design proceeds, utilizing various information such as nominal geometry, design intents, and design feature characteristics. The proposed apptroach can handle complex intersecting features and protrusion features designed on oblique faces. The class of recognized volumetric machining features can be expressed as Material Removal Shape Element Volumes (MRSEVs), a PDES/STEP-based library of machining features.

  • PDF

A study on the Methodology of Machining process of Features Using STEP AP224 (STEP AP224를 이용한 특징형상의 가공 방법에 관한 연구)

  • 김야일;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.145-149
    • /
    • 1997
  • STEP AP224 includes the information of machining feature and tolerances. Machining features are machined from raw material. Tolerance constrain feasible methods of manufacture, strongly influence the cost of manufacture. And tolerances influence the machining process. We need to decide the precedence between features .tool radius and tool direction for minimum tool changes. This paper deals with the method of decision of precedence between features and process parameters using feature information and tolerances in STEP AP224.

  • PDF

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 2 - Using Negative Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 2 - 절삭가공 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes.. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the second one of the two companion papers, describes the similarity assessment method using NFD.

Part Similarity Assessment Method Based on Hierarchical Feature Decomposition: Part 1 - Using Convex Decomposition and Form Feature Decomposition (계층적 특징형상 정보에 기반한 부품 유사성 평가 방법: Part 1 - 볼록입체 분할방식 및 특징형상 분할방식 이용)

  • 김용세;강병구;정용희
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Mechanical parts are often grouped into part families based on the similarity of their shapes, to support efficient manufacturing process planning and design modification. The 2-part sequence papers present similarity assessment techniques to support part family classification for machined parts. These exploit the multiple feature decompositions obtained by the feature recognition method using convex decomposition. Convex decomposition provides a hierarchical volumetric representation of a part, organized in an outside-in hierarchy. It provides local accessibility directions, which supports abstract and qualitative similarity assessment. It is converted to a Form Feature Decomposition (FFD), which represents a part using form features intrinsic to the shape of the part. This supports abstract and qualitative similarity assessment using positive feature volumes. FFD is converted to Negative Feature Decomposition (NFD), which represents a part as a base component and negative machining features. This supports a detailed, quantitative similarity assessment technique that measures the similarity between machined parts and associated machining processes implied by two parts' NFDs. Features of the NFD are organized into branch groups to capture the NFD hierarchy and feature interrelations. Branch groups of two parts' NFDs are matched to obtain pairs, and then features within each pair of branch groups are compared, exploiting feature type, size, machining direction, and other information relevant to machining processes. This paper, the first one of the two companion papers, describes the similarity assessment methods using convex decomposition and FFD.

Technical Issues in Pattern Machining (패턴 가공에서의 기술적인 고려사항)

  • 김보현;최병규
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.263-270
    • /
    • 2001
  • In stamping-die manufacturing, the first step is to build die patterns for lost wax casting process. A recent industry trend is to manufacture the die pattern using 3-axis NC machining. This study identifies technical considerations of the pattern machining caused by the characteristics of Styrofoam material, and proposes technical methods related to establishing a process plan and generating tool paths for optimizing the pattern machining. In this paper, the process plan includes the fellowing three items: 1) deter-mining a global machining sequence-a sequence of profile, top, bottom machining and two set-ups, 2) extracting machining features from a pattern model and merging them, and 3) determining a machining sequence of machining features. To each machining feature, this study determines the machining start point, generates the approach tool path, and proposes a tool path linking method fur reducing the distance of the cutter rapid motion. Finally, a smooth tool path generation and an automatic feedrate adjustment (AFA) method are introduced far raising the machining efficiency.

  • PDF

Development of New Rapid Prototyping System Performing both Deposition and Machining (II) (적층과 절삭을 복합적으로 수행하는 새로운 개념의 판재 적층식 쾌속 시작 시스템의 개발(II) - 공정계획 시스템 -)

  • Heo, Jeong-Hun;Lee, Geon-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2235-2245
    • /
    • 2000
  • The necessity of using rapid prototyping(RP) for short-run manufacturing is continuously driving a development of a cost-effective technique that will produce completely-finished quality parts in a very short time. To meet these demands, the improvements in production speed, accuracy, materials, aid cost are crucial. Thus, a new hybrid-RP system performing both deposition and machining in a station is proposed. For the new hybrid RP process to maintain the same degree of process automation as in currently available processes like SLA or FDNI, a sophisticated process planning system is developed. In the process planner, CAD models(STEP AP203) are partitioned into 3D manufacturable volumes called 'Ueposition feature segment"(DFS) after machining features called "machining feature segmenf'(MFS) are extracted from the initial CAD model. Once MFS and DFS are identified, the process planner arranges them into a chain of processes and automatically generates machining information for each DFS and MFS. The goal of this paper is to present a framework for a process planning system for hybrid RP processes and to outline the geometric algorithms involved in developing such an environment.