• Title/Summary/Keyword: margin loss function

Search Result 16, Processing Time 0.032 seconds

Generalized Support Vector Quantile Regression (일반화 서포트벡터 분위수회귀에 대한 연구)

  • Lee, Dongju;Choi, Sujin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.107-115
    • /
    • 2020
  • Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the ⲉ-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within ⲉ. In most studies, the ⲉ-insensitive loss function is used symmetrically, and it is of interest to determine the value of ⲉ. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of ⲉ and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of ⲉ. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of ⲉ and the slope of the penalty using the parameters p1 and p2, respectively. Moreover, the figures show that the asymmetry of the width of ⲉ and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.

MARGIN-BASED GENERALIZATION FOR CLASSIFICATIONS WITH INPUT NOISE

  • Choe, Hi Jun;Koh, Hayeong;Lee, Jimin
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.217-233
    • /
    • 2022
  • Although machine learning shows state-of-the-art performance in a variety of fields, it is short a theoretical understanding of how machine learning works. Recently, theoretical approaches are actively being studied, and there are results for one of them, margin and its distribution. In this paper, especially we focused on the role of margin in the perturbations of inputs and parameters. We show a generalization bound for two cases, a linear model for binary classification and neural networks for multi-classification, when the inputs have normal distributed random noises. The additional generalization term caused by random noises is related to margin and exponentially inversely proportional to the noise level for binary classification. And in neural networks, the additional generalization term depends on (input dimension) × (norms of input and weights). For these results, we used the PAC-Bayesian framework. This paper is considering random noises and margin together, and it will be helpful to a better understanding of model sensitivity and the construction of robust generalization.

Implicit Treatment of Technical Specification and Thermal Hydraulic Parameter Uncertainties in Gaussian Process Model to Estimate Safety Margin

  • Fynan, Douglas A.;Ahn, Kwang-Il
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.684-701
    • /
    • 2016
  • The Gaussian process model (GPM) is a flexible surrogate model that can be used for nonparametric regression for multivariate problems. A unique feature of the GPM is that a prediction variance is automatically provided with the regression function. In this paper, we estimate the safety margin of a nuclear power plant by performing regression on the output of best-estimate simulations of a large-break loss-of-coolant accident with sampling of safety system configuration, sequence timing, technical specifications, and thermal hydraulic parameter uncertainties. The key aspect of our approach is that the GPM regression is only performed on the dominant input variables, the safety injection flow rate and the delay time for AC powered pumps to start representing sequence timing uncertainty, providing a predictive model for the peak clad temperature during a reflood phase. Other uncertainties are interpreted as contributors to the measurement noise of the code output and are implicitly treated in the GPM in the noise variance term, providing local uncertainty bounds for the peak clad temperature. We discuss the applicability of the foregoing method to reduce the use of conservative assumptions in best estimate plus uncertainty (BEPU) and Level 1 probabilistic safety assessment (PSA) success criteria definitions while dealing with a large number of uncertainties.

Proposal of CPC Function Improvement

  • Lee, Byung-Il;Kim, Jong-Jin;Baek, Seung-Su;Kim, Hee-Cheol;Lee, Sang-Yong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05a
    • /
    • pp.562-567
    • /
    • 1995
  • The concept of VLDT (Variable Low DNBR Trip), a new CPC trip function, was proposed and applied to the events of increase in secondary heat removal, such as an excess feedwater event anti an IOSGADV (Inadvertent Opening S/G Atmospheric Dump Valve). Major assumption used in this study was no time delay to LOOP (Loss of Offsite Power) after turbine trip. In case of using this VLDT function, safety criterion of DNB would not be violated under the same condition as previous analysis without any change in thermal margin.

  • PDF

Development of Application Models Based on the Robust Design (타구치 로버스트 계획에서 응용모형의 개발)

  • Choi, Sung-Woon
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.203-209
    • /
    • 2011
  • This study develops three new models that are practically applicable to three stages of Taguchi's robust design, which includes system design, parameter design and tolerance design. In system design, the Multiple Loss Function Analysis(MLFA) and Overall Loss Index(OLI) which reflect upon weight of characteristics and importance of specification are developed. Moreover parameter design presents Process Capability Index(PCI), $C_{PUK}$ and $C_{PLK}$, in order to segregate Signal-To-Noise Ratio(SNR) into accuracy and precision for an evaluation of relative comparison. In addition, tolerance design presents the new model of allowance computation for assembled product which is primarily derived from safety margin(SM) considering functional limit and specification. The guideline of those three new models, which include systematic charts and applicable illustrations, offers convenience for practitioners in the field. Hence, the practical applications could be made with the steps of robust designs such as system design, parameter design and specification allowance design.

Learning T.P.O Inference Model of Fashion Outfit Using LDAM Loss in Class Imbalance (LDAM 손실 함수를 활용한 클래스 불균형 상황에서의 옷차림 T.P.O 추론 모델 학습)

  • Park, Jonghyuk
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.17-25
    • /
    • 2021
  • When a person wears clothing, it is important to configure an outfit appropriate to the intended occasion. Therefore, T.P.O(Time, Place, Occasion) of the outfit is considered in various fashion recommendation systems based on artificial intelligence. However, there are few studies that directly infer the T.P.O from outfit images, as the nature of the problem causes multi-label and class imbalance problems, which makes model training challenging. Therefore, in this study, we propose a model that can infer the T.P.O of outfit images by employing a label-distribution-aware margin(LDAM) loss function. Datasets for the model training and evaluation were collected from fashion shopping malls. As a result of measuring performance, it was confirmed that the proposed model showed balanced performance in all T.P.O classes compared to baselines.

A Study on the Design of the Robust Feedback Active Noise Controller (강인한 궤환 능동 소음 제어기의 설계에 관한 연구)

  • Ahn, Woo-Hyun;Chung, Tae-Jin;Yu, Chi-Hyung;Chung, Chan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.1018-1020
    • /
    • 1996
  • In this paper, when a robust active noise controller for a small cavity to control the noise induced in the cavity is designed, the Graphical method based on the robust stability and performance requirements is studied. The problem of designing controller that achieve these robust performance conditions is related to minimizing the $H_{\infty}$ norm of the mixed sensitivity function by using $H_{\infty}$ control theory. Also, For design the controller, the loopshaping method which control the weight functions to satisfy the design specification without loss of a robust performance can be used. Therefore, we determined the acceptable design specification with the system characteristics of the small cavity and obtained its robust controller with the robust performance specifications by stability margin.

  • PDF

A Contrastive Learning Framework for Weakly Supervised Video Anomaly Detection

  • Hyeon Jeong Park;Je Hyeong Hong
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.11a
    • /
    • pp.171-174
    • /
    • 2022
  • Weakly-supervised learning is a widely adopted approach in video anomaly detection whereby only video labels are utilized instead of expensive frame-level annotations. Since the success of multi-instance learning (MIL), almost all recent approaches are based on maximizing the margin between the set of abnormal video snippets and those of normal video snippets. In this work, we present a simple contrastive approach for weakly supervised video anomaly detection (WS-VAD) with aims to enhance the performance of existing models. The method is generic in nature and introduces a loss function to encourage attraction of output features from the same video class and repel those from different video classes. Experimental results demonstrate our method can be applied to existing algorithms to improve detection accuracy in public video anomaly dataset.

  • PDF

Object Classification with Angular Margin Loss Function (각도 마진 손실 함수를 적용한 객체 분류)

  • Park, Seonji;Cho, Namik
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.224-227
    • /
    • 2022
  • 객체 분류는 입력으로 주어진 이미지에 포함된 객체의 종류를 판단하는 기술이다. 대표적인 딥러닝 기반의 객체 분류 방법으로서 Faster R-CNN[2], YOLO[3] 등의 모델이 개발되었으나, 여전히 성능 향상의 여지가 있다. 본 연구에서는 각도 마진 손실 함수를 기존의 몇 가지 객채 분류 모델에 적용하여 성능 향상을 유도한다. 각도 마진 손실 함수는 얼굴 인식 모델인 SphereFace [4]에서 제안한 방법으로, 얼굴 인식과 같이 단일 도메인의 데이터셋을 분류하는 문제를 풀기 위해 제안되었다. 이는 기존 소프트맥스 함수에서 클래스 결정 경계선에 마진을 주는 방식으로 클래스 간의 구분 능력을 향상시킨다. 본 논문은 각도 마진 손실 함수를 CIFAR10, CIFAR100 데이터셋의 분류 문제에 적용하였으며 ResNet, EfficientNet, MobileNet 등의 백본 네트워크로 실험하여 평균적으로 mAP 성능이 향상되는 것을 확인하였다.

  • PDF

Centralized Control Algorithm for Power System Performance using FACTS Devices in the Korean Power System

  • Kang, Sang-Gyun;Seo, Sang-Soo;Lee, Byong-Jun;Chang, Byung-Hoon;Myung, Ro-Hae
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.3
    • /
    • pp.353-362
    • /
    • 2010
  • This paper presents a centralized control algorithm for power system performance in the Korean power system using Flexible AC Transmission Systems (FACTS) devices. The algorithm is applied to the Korean power system throughout the metropolitan area in order to alleviate inherent stability problems, especially concerns with voltage stability. Generally, control strategies are divided into local and centralized control. This paper is concerned with a centralized control strategy in terms of the global system. In this research, input data of the proposed algorithm and network data are obtained from the SCADA/EMS system. Using the full system model, the centralized controller monitors the system condition and decides the operating point according to the control objectives that are, in turn, dependent on system conditions. To overcome voltage collapse problems, load-shedding is currently applied in the Korean power system. In this study, the application of the coordination between FACTS and switch capacitor (SC) can restore the solvability without load shedding or guarantee the FV margin when the margin is insufficient. Optimal Power Flow (OPF) algorithm, for which the objective function is loss minimization, is used in a stable case. The results illustrate examples of the proposed algorithm using SCADA/EMS data of the Korean power system in 2007.