• Title/Summary/Keyword: mean flow-eddy interaction

Search Result 16, Processing Time 0.028 seconds

Mean Meridional Circulation-Eddy Interaction in Three Reanalysis Data Sets during the Boreal Winter (세 가지 재분석 자료에서의 겨울철 북반구 평균 자오면 순환-에디 상호작용)

  • Moon, Hyejin;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.25 no.3
    • /
    • pp.543-557
    • /
    • 2015
  • The present study examines an interaction between the eddy and mean meridional circulation (MMC) comparing the results in three reanalysis data sets including ERA-Interim, NCEP2, and JRA-55 during the boreal winter in the Northern Hemisphere. It is noteworthy that the JRA-55 tends to produce stronger MMC compared to those of others, which is mainly due to the weak eddy flux. ERA-Interim represents the ensemble averages of MMC. The MMC-eddy interaction equation was adopted to investigate the scale interaction of the eddy momentum flux (EMF), eddy heat flux (EHF), and diabatic heating (DHT) with MMC. The EMF (EHF) shows a significant correlation coefficient with streamfunction under (above) 200 hPa-level. The perturbation (time mean) part of each eddy is dominant compared to another part in the EMF (EHF). The DHT is strongly interacted with streamfunction in the region between the equator and extra-tropical latitude over whole vertical column. Thus, the dominant term in each significant region modulates interannual variability of MMC. The inverse (proportional) relationship between MMC and pressure (meridional) derivative of the momentum (heat) divergence contributions is well represented in the three reanalysis data sets. The region modulated interannual variability of MMC by both EMF and DHT (EHF) is similar in ERA-Interim and JRA-55 (ERA-Interim and NCEP2). JRA-55 shows a lack of significant region of EHF due to the high resolution, compared to other data sets.

Large Eddy Simulation of Turbulent Premixed Flame in a Swirled Combustor Using Multi-environment Probability Density Function approach (MEPDF를 이용한 와류 연소실 내부 예혼합 화염의 대 와동 모사)

  • Kim, Namsu;Kim, Yongmo
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.3
    • /
    • pp.29-34
    • /
    • 2017
  • The multi-environment probability density function model has been applied to simulate a turbulent premixed flame in a swirl combustor. To realistically account for the unsteady flow motion inside the combustor, the formulations are derived for the large eddy simulation. The Flamelet generated manifolds is utilized to simplify a multi-dimensional composition space with reasonable accuracy. The sub grid scale mixing is modeled by the interaction by exchange with the mean mixing model. To validate the present approach, the simulation results are compared with experimental data in terms of mean velocity, temperature, and species mass fractions.

An Experimental Study on Turbulent Counter Jet Flame near Stagnation Point (대향 제트 정체점 주변의 난류 화염에 관한 연구)

  • Ko, Il-Min;Seo, Jeong-Il;Hong, Jung-Goo;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.128-134
    • /
    • 2006
  • A characterization of turbulent reacting flows has proved difficult owing to the complex interaction between turbulence, mixing, and combustion chemistry. There are many types of time scales in turbulent flame which can determine flame structure. This counter jet type premixed burner produces high intensity turbulence. The goal is to gain better insights into the flame structures at high turbulence. 6 propane/air flames gave been studied with high velocity fluctuation in bundle type nozzle and in one hole type nozzle. By measuring velocity fluctuation, turbulent intensity and integral length scale are obtained. And sets of OH LIF images were processed to see flame structure of the mean flame curvatures and flame lengths for comparison with turbulence intensity and turbulent length scales. The results show that the decrease in nozzle size generates smaller flow eddy and mean curvatures of the flame fronts, and a decrease in Damkohler number estimated from flow time scale measurement.

  • PDF

On Subgrid-Scale Models for Large-Fddy Simulation of Turbulent Flows (난류유동의 큰 에디 모사를 위한 아격자 모델)

  • Gang, Sang-Mo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.11
    • /
    • pp.1523-1534
    • /
    • 2000
  • The performance of a number of existing dynamic subgrid-scale(SGS) models is evaluated in large-eddy simulations(LES) of two prototype transitional and turbulent shear flows, a planar jet and a channel flow. The dynamic SGS models applied include the dynamic Smagorinsky model(DSM);Germano et al. 1991, Lully 1992), the dynamic tow-component model(DTM; Akhavan et al. 2000), the dynamic mixed model(DMM;Zang et al, 1993). and the dynamic two-parameter model(DTPM; Salvetti & Banerjee 1995). The results are compared with those for DNS for their evaluation. The LES results demonstrate the superior performance of DTM with use of a sharp cutoff filter and DMM with use of a box filter, as compared to their respect counterpart DSM, in predicting the mean statistics, spectra and large-scale structure of the flow, Such features of DTM and DMM derive from the construction of the models in which tow separate terms are included to represent the SGS interactions; a Smagorinsky edd-viscosity term to account for the non-local interactions, and a local-interaction term to account for the nonlinear dynamics between the resolved and subgrid scales in the vicinity of the LES cutoff. As well, overall the SGS models using a sharp cutoff filter are more successful than those using a box filter in capturing the statistics and structure of the flow. Finally, DTPM is found to be compatible or inferior to DMM.

LES Studies on the Characteristics of Turbulent Premixed Flame with the Configurations of Burner Exit (버너 출구의 형상변화에 따른 난류 예혼합 화염의 특성에 관한 LES 연구)

  • Hwang, Cheol-Hong;Lee, Chang-Eon
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.96-104
    • /
    • 2006
  • In the present paper, the effects of combustion instability on flow structure and flame dynamic with the configurations of burner exit in a model gas turbine combustor are investigated using large eddy simulation(LES). A G-equation flamelet model is employed to simulate the unsteady flame behavior. As a result of mean flow field, the change of divergent half angle(${\alpha}$) at burner exit results in variations in the size and shape of the central toroidal recirculation(CTRZ) as well as flame length by changing corner recirculation zone(CRZ). The case of ${\alpha}=45^{\circ}$ show smaller size and upstream location of CTRZ than that of $90^{\circ}$ and $30^{\circ}$ by the development of higher swirl velocity. The flame length in the case of ${\alpha}=45^{\circ}$ is the most shortest, while that in the case of ${\alpha}=30^{\circ}$ is the longest by the decrease of effective reactive area with the absence of CRZ. Through the analysis of pressure fluctuation, it is identified that the case of ${\alpha}=45^{\circ}$ shows the most largest damping effect of pressure oscillation in all configurations and brings in the noise reduction of 2.97dB, comparing with that of ${\alpha}=30^{\circ}$ having the largest pressure oscillation. These reasons are discussed in detail through the analysis of unsteady phenomena about recirculation zone and flame surface. Finally the effects of flame-acoustic interaction are evaluated using local Rayleigh parameter.

  • PDF

Two-way fluid-structure interaction simulation for steady-state vibration of a slender rod using URANS and LES turbulence models

  • Nazari, Tooraj;Rabiee, Ataollah;Kazeminejad, Hossein
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.573-578
    • /
    • 2019
  • Anisotropic distribution of the turbulent kinetic energy and the near-field excitations are the main causes of the steady state Flow-Induced Vibration (FIV) which could lead to fretting wear damage in vertically arranged supported slender rods. In this article, a combined Computational Fluid Dynamics (CFD) and Computational Structural Mechanic (CSM) approach named two-way Fluid-Structure Interaction (FSI) is used to investigate the modal characteristics of a typical rod's vibration. Performance of an Unsteady Reynolds-Average Navier-Stokes (URANS) and Large Eddy Simulation (LES) turbulence models on asymmetric fluctuations of the flow field are investigated. Using the LES turbulence model, any large deformation damps into a weak oscillation which remains in the system. However, it is challenging to use LES in two-way FSI problems from fluid domain discretization point of view which is investigated in this article as the innovation. It is concluded that the near-wall meshes whiten the viscous sub-layer is of great importance to estimate the Root Mean Square (RMS) of FIV amplitude correctly as a significant fretting wear parameter otherwise it merely computes the frequency of FIV.

Experimental Study on Flow Characteristics of Regular Wave Interacting with Rectangular Floating Structure Using PIV Technique (PIV시스템을 이용한 규칙파중 2차원 사각형 부유식 구조물 주위의 유동특성 연구)

  • Jung, Kwang-Hyo;Chun, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.6 s.73
    • /
    • pp.41-53
    • /
    • 2006
  • This experimental study investigated the flow characteristics for regular waves passing a rectangular floating structure in a two-dimensional wave tank. The particle image velocimetry (PIV) was employed to obtain the velocity field in the vicinity of the structure. The phase average was used to extract the mean flow and turbulence property from repeated instantaneous PIV velocity profiles. The mean velocity field represented the vortex generation and evolution on both sides of the structure. The turbulence properties, including the turbulence length scale and the turbulent kinetic energy budget were investigated to characterize the flow interaction between the regular wave and the structure. The results shaw the vortex generated near the structure corners, which are known as the eddy-making damping or viscous damping. However, the vortex induced by the wave is longer than the roll natural period of the structure, which presents the phenomena opposing the roll damping effect; that is, the vortex may increase the roll motion under the wave condition longer than the roll natural period.

Numerical study of wake and aerodynamic forces on a twin-box bridge deck with different gap ratios

  • Shang, Jingmiao;Zhou, Qiang;Liao, Haili;Larsen, Allan;Wang, Jin;Li, Mingshui
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.367-378
    • /
    • 2020
  • Two-dimensional Delayed Detached Eddy Simulation (DDES) was carried out to investigate the uniform flow over a twin-box bridge deck (TBBD) with various gap ratios of L/C=5.1%, 12.8%, 25.6%, 38.5%, 73.3% and 108.2% (L: the gap-width between two girders, C: the chord length of a single girder) at Reynolds number, Re=4×104. The aerodynamic coefficients of the prototype deck with gap ratio of 73.3% obtained from the present simulation were compared with the previous experimental and numerical data for different attack angles to validate the present numerical method. Particular attention is devoted to the fluctuating pressure distribution and forces, shear layer reattachment position, wake velocity and flow pattern in order to understand the effects of gap ratio on dynamic flow interaction with the twin-box bridge deck. The flow structure is sensitive to the gap, thus a change in L/C thus leads to single-side shedding regime at L/C≤25.6%, and co-shedding regime at L/C≥35.8% distinguished by drastic changes in flow structure and vortex shedding. The gap-ratio-dependent Strouhal number gradually increases from 0.12 to 0.27, though the domain frequencies of vortices shedding from two girders are identical. The mean and fluctuating pressure distributions is significantly influenced by the flow pattern, and thus the fluctuating lift force on two girders increases or decreases with increasing of L/C in the single-side shedding and co-shedding regime, respectively. In addition, the flow mechanisms for the variation in aerodynamic performance with respect to gap ratios are discussed in detail.

Large Eddy Simulation of the flow around a finite-length square cylinder with free-end slot suction

  • Wang, Hanfeng;Zeng, Lingwei;Alam, Md. Mahbub;Guo, Wei
    • Wind and Structures
    • /
    • v.30 no.5
    • /
    • pp.533-546
    • /
    • 2020
  • Large Eddy Simulation (LES) is used to study the effects of steady slot suction on the aerodynamic forces of and flow around a wall-mounted finite-length square cylinder. The aspect ratio H/d of the tested cylinder is 5, where H and d are the cylinder height and width, respectively. The Reynolds number based on free-stream oncoming flow velocity U and d is 2.78×104. The suction slot locates near the leading edge of the free end, with a width of 0.025d and a length of 0.9d. The suction coefficient Q (= Us/U) is varied as Q = 0, 1 and 3, where Us is the velocity at the entrance of the suction slot. It is found that the free-end steady slot suction can effectively suppress the aerodynamic forces of the model. The maximum reduction of aerodynamic forces occurs at Q = 1, with the time-mean drag, fluctuating drag, and fluctuating lift reduced by 3.75%, 19.08%, 40.91%, respectively. For Q = 3, all aerodynamic forces are still smaller than those for Q = 0 (uncontrolled case), but obviously higher than those for Q = 1. The involved control mechanism is successfully revealed, based on the comparison of the flow around cylinder free end and the near wake for the three tested Q values.

Three-Dimensional Flow Characteristics and Wave Height Distribution around Permeable Submerged Breakwaters; PART II - with Beach (잠제 주변의 파고분포 및 흐름의 3차원 특성; PART II-해빈이 있을 경우)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.115-123
    • /
    • 2008
  • In the present study, a three dimensional hydrodynamic characteristics around the fully submerged dual breakwaters with a sand beach has been investigated numerically using a 3-D numerical scheme, which can determine the eddy viscosity with LES turbulence model and is able to consider wave-structure-seabed interaction in 3-dimensional wave field (LES-WASS-3D), recently developed by Hur and Lee (2007). Based on the numerical experiments, strong vortices can be generated fore and aft edges of the structures, and propagate lee sides. Thus relatively large circulation flows are occurred around submerged breakwaters. The 3-D flow hydrodynamic characteristics have been examined by mean flows and mean vortices for various x-y, x-z sections and y-z layers. Wave height distribution and wave set-up around and over submerged breakwaters, and breaking point migration toward shore side is discussed in detail.