• Title/Summary/Keyword: modeled space

Search Result 508, Processing Time 0.031 seconds

Study on the Concept of Space and Modeled Space of the Jiu-Gong (공간의 개념과 구궁의 공간모델화에 대한 연구)

  • Kim Yang Chan;Kang Jung Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.5
    • /
    • pp.851-856
    • /
    • 2002
  • All creatures are living in the space and time. As the space and time are prior to experience, they are preconditions for an incident to happen and preconditions for each other to coexist as well. Therefore, time can be recognized through the change of space and the space can be understood by the passage of time. In western philosophy, the space was understood as an object, place, interval, mind and etc. In oriental philosophy, even though one space is just a part of bigger space, the space may represent the universal space, and the various spaces are no more than a space. The space itself doesn't have any color, form, beginning and end, or liu-he(六合). However, it is the biggest concept that we can find everywhere. In order to understand the space, we need to find our position by expressing subjective positions like above and below, left and right, before and after, and objective positions like high and low, east and west, south and north. In oriental philosophy, the sun is the standard point in finding position; its front side is south, the backside is north, the left side is east, the right side is west, the upper side is south and the lower side north. Based on the finding position which is stated above and by taking each characteristics of he-luo-xi-wen(河洛羲文) and interrelations among them, the space can be modeled. Followings are the results obtained from this study: Tian doesn't fill in west and north. Di doesn't fill in east and south. Tian-dao(天道) turns to left, and Di-dao(地道) turns to right. There is no direct way to get to Dui-chong-fang without passing by Zhong-gong(中宮). The solid figure of eighty-one Bian-ju(變局) and sixty-four Gua-tu(卦圖).

MODEL INFRARED SPECTRA FOR PROTO STARS

  • 서경원;송인옥
    • Journal of Astronomy and Space Sciences
    • /
    • v.14 no.2
    • /
    • pp.202-206
    • /
    • 1997
  • We have modeled the infrared spectral energy distributions of proto stars with close attention to the dust envelopes around the stars. The observed spectral energy distributions are closely compared with our models. The model results and observations are compared on IRAS color-color diagrams. Typical model results can explain the observations fairly well.

  • PDF

A Spillover Suppression Method in a Flexible Structure Using Eigenstructure Assignment (고유구조지정법을 이용한 유연구조물의 스필오버 억제방법)

  • Park, Jae-Weon;Park, Un-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.955-962
    • /
    • 2000
  • Although large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional systems, they have to be modeled into a lumped parameter and large finite-dimensional system for control system design. Besides, there remains the fundamental problem that the modeled large finite-dimensional system must be controled with a much smaller dimensional controller due to the limitation of computing resources. This causes the spillover phenomenon which degrades control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we propose a novel spillover suppression method in the active vibration control of large flexible structures by using eigenstructure assignment. Its validity and effectiveness are investigated and verified by the numerical experiments using a simply supported flexible beam, which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

Spillover Suppression in a Flexible Structure using Eigenstructure Assignment (고유구조지정법을 이용한 유연구조물의 스필오버억제)

  • Park, Un-Sik;Choi, Jae-Weon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.499-504
    • /
    • 2000
  • Since large space structures(LSS) such as a space station, a solar power station satellite, etc., are theoretically distributed parameter and infinite-dimensional system, they have to be modeled into large finite-dimensional systems for control system design. Besides, there are fundamental problems in active vibration control of the large flexible structures. For example, a modeled large finite-dimensional system must be controlled with a much smaller dimensional controller. This causes the spillover phenomenon which degrades the control performances and reduces the stability margin. Furthermore, it may destabilize the entire feedback control system. In this paper, we proposed a novel control method for spillover suppression in the control of large flexible structures by using eigenstructure assignment. Its effectiveness in spillover suppression is investigated and verified by the numerical experiments using an example of the simply supported flexible beam which is modeled to have four controlled modes and eight uncontrolled modes.

  • PDF

Effect of Space Velocity on the DeNOx Performance in Diesel SCR After-Treatment System (디젤 SCR 후처리장치 내 공간속도가 NOx 저감에 미치는 영향)

  • Wang, Tae-Joong;Baek, Seung-Wook;Kang, Dae-Hwan;Kil, Jung-Ki;Yeo, Gwon-Koo
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.49-54
    • /
    • 2006
  • The present study conducted a numerical modeling on the diesel SCR (selective catalytic reduction) system using ammonia as a reductant over vanadium-based catalysts $(V_2O_5-WO_3/TiO_2)$. Transient modeling for ammonia adsorption/desorption on the catalyst surface was firstly carried out, and then the SCR reaction was modeled considering for it. In the current catalytic reaction model, we extended the pure chemical kinetic model based on laboratory-scale powdered-phase catalyst experiments to the chemico-physical one applicable to realistic commercial SCR reactors. To simulate multi-dimensional heat and mass transfer phenomena, the SCR reactor was modeled in two dimensional, axisymmetric domain using porous medium approach. Also, since diesel engines operate in transient mode, the present study employed an unsteady model. In addition, throughout simulations using the developed code, effects of space velocity on the DeNOx performance were investigated.

  • PDF

ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1 (우리별 1호의 자세제어 시스템)

  • 이현우;김병진;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.67-81
    • /
    • 1996
  • The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  • PDF

Hypervelocity Impact Analyses Considering Various Impact Conditions for Space Structures with Different Thicknesses (다양한 두께의 우주 구조물에 대한 다양한 충돌 조건의 초고속 충돌 해석 연구)

  • Won-Hee Ryu;Ji-Woo Choi;Hyo-Seok Yang;Hyun-Cheol Shin;Chang-Hoon Sim;Jae-Sang Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.4
    • /
    • pp.43-57
    • /
    • 2023
  • The hypervelocity impact simulations of space objects and structures are performed using LS-DYNA. Space objects with spherical, conical, and hollow cylindrical shapes are modeled using the Smoothed Particle Hydrodynamics (SPH). The direct and indirect impact zones of a space structure are modeled using the SPH and finite element methods, respectively. The Johnson-Cook material model and Mie-Grüneisen Equation of State are used to represent the nonlinear behavior of metallic materials in hypervelocity impact. In the hypervelocity impact simulations, various impact conditions are considered, such as the shape of the space object, the thickness of the space structure, the impact angle, and the impact velocity. The shapes of debris clouds are quantitatively classified based on the geometric parameters. Conical space objects provide the worst debris clouds for all impact conditions.

Stochastic space vibration analysis of a train-bridge coupling system

  • Li, Xiaozhen;Zhu, Yan
    • Interaction and multiscale mechanics
    • /
    • v.3 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • The Pseudo-Excitation Method (PEM) is applied to study the stochastic space vibration responses of train-bridge coupling system. Each vehicle is modeled as a four-wheel mass-spring-damper system with two layers of suspension system possessing 15 degrees-of- freedom. The bridge is modeled as a spatial beam element, and the track irregularity is assumed to be a uniform random process. The motion equations of the vehicle system are established based on the d'Alembertian principle, and the motion equations of the bridge system are established based on the Hamilton variational principle. Separate iteration is applied in the solution of equations. Comparisons with the Monte Carlo simulations show the effectiveness and satisfactory accuracy of the proposed method. The PSD of the 3-span simply-supported girder bridge responses, vehicle responses and wheel/rail forces are obtained. Based on the $3{\sigma}$ rule for Gaussian stochastic processes, the maximum responses of the coupling system are suggested.

Boundary/Finite Element Analysis of the Seismic Wave Amplifications due to Nonhomogeneous Alluvial Deposits (비균질 퇴적층으로 인한 지진파 증폭의 경계/유한요소 해석)

  • 김효건;손영호;김종주;최광규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.463-470
    • /
    • 1998
  • The boundary/finite element analysis for the seismic wave amplifications due to nonhomogeneous alluvial deposits was performed in this study. For numerical analysis, the homogeneous linear elastic soil half-space was modeled by using the 3-node isoparametric boundary elements and the inhomogeneous alluvial deposit was modeled by using the 8-node isoparametric finite elements. The two elements at interface were coupled together by the equilibrium condition of the tractions and the compatibility condition of the displacements. As a prarmetric variable, the incident angle and the dimensionsless frequency of the SH, P and SV-waves and the shear wave velocity ratio and the mass density ratio between the half-space and the alluvial deposit were selected.

  • PDF

Performance evaluation of ATM switch with space priority control mechanism (우선순위 기능을 가진 ATM스위치의 성능분석)

  • 장재신;신병철
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1991.10a
    • /
    • pp.141-144
    • /
    • 1991
  • In this paper, we analyze the performance of ATM switch with output buffer which has a space priority control mechanism. As we assumed that the input traffic consists of loss tolerable voice and loss sensitive data, we modeled it with MMPP(Markov Modulated Poisson Process). We confirmed that the loss probability of loss sensitive traffic decreases when we use the space priority control mechanism.