• Title/Summary/Keyword: modified Cam clay model

Search Result 60, Processing Time 0.02 seconds

Numerical Analysis of Piezocone Test using Modified Cam-Clay Model (Modified Cam-Clay Model을 이용한 피에조콘 시험의 수치해석)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.89-99
    • /
    • 2001
  • In this study, the numerical analysis of piezocone penetration and dissipation tests has been conducted using the Modified Cam-Clay model, which is generally used in soil mechanics. The Modified Cam-Clay model and related mathematical equations in finite element derivation have been formulated in the Updated Lagrangian reference frame to take the large displacement and finite strain nature of piezocone penetration into consideration. The cone tip resistance, the pore water pressure, and the dissipation curve obtained from the finite element analysis have been compared and investigated with the experimental results from piezocone penetration test performed in Yangsan site. The numerical results showed good agreement with the experimental results; however, the better numerical simulation of the continuous and deep penetration needs further research.

  • PDF

Analytical solution of stress-strain relationship of modified Cam clay in undrained shear

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.263-274
    • /
    • 2009
  • The modified Cam clay (MCC) model is used to study the response of virgin compressed clay in undrained compression. The MCC deviatoric stress-strain relationship is obtained in closed form. Elastic and plastic deviatoric strains are taken into account in the analysis. For the determination of the elastic strain components, both a variable shear modulus and constant shear modulus are considered. Constitutive relationships are applied to the well-known London and Weald clays sheared in undrained compression.

The Introduction of Egg-Cam Clay Model and Elasto-Plastic Analysis of Reinforcement Effect on Buried Pipe (Egg-Cam Clay 모델 제안 및 지중매설관의 보강효과의 탄소성모델 해석)

  • Ahn, Tae-Bong;Cho, Sam-Duck;Kim, Jin-Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.2
    • /
    • pp.5-14
    • /
    • 2002
  • In this study, stress-deformation characteristics of buried pipe are studied. A numerical model, i.e., Egg-Cam Clay is introduced for the analysis of soft clay. Cam Clay model has a difficulty in analyzing soft clay that has two properties of shrinkage and swelling. Egg-Cam Clay model is modified format of Cam Clay model. In addition, Mohr-Coulomb model using finite element method is employed to verify effects of the geogrid, EPS geofoam. Stress deformation of several cases of pipe and other reinforcemnt material combinations are analyzed. Geofoam and geogrid have positive effects on the deformation characteristics.

  • PDF

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

Finite Element Analysis on the Behavior of Soil under a Footing (기초(基礎)아래 지반(地盤)의 거동에 대한 유한요소(有限要所) 해석(解析))

  • Lee, Yeong Saeng;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.167-176
    • /
    • 1991
  • Finite element programs are developed, adopting the hyperbolic model and the Cam-clay model. In the hyperbolic model, a new model taking into account the volume change during shear is proposed and a new technique considering the density change underneath a footing is proposed. And a computing algorithm considered as more reasonable than existing one is presented. In the Cam-clay model, the deveoloped program is applied to sand, the case not recorded much, and then it is tried to analiza the behavior of sand from the viewpoint of the critical state concept. For this, the conventional CD triaxial compression tests and the footing model tests are carried out. The results are improved by 60 percent by using the modified hyperbolic model proposed. When the Cam-clay model is applied to sand, a model reflecting the overconsolidation effects and a computing algorithm accounting for the strain softening are needed. The results obtained by using the Cam-clay model are not much influenced by the value of the initial poisson's ratio, but those of the modified hyperbolic model are much influenced by that. So th values of the initial poisson's ratio must be selected deliberately in the numerical analysis.

  • PDF

An Analysis on Stress Distribution within Soft Layer Subject to Embomkment Loading (유안요소법에 의한 식중응력의 해석)

  • Park, Byeong-Gi;Lee, Mun-Su;Lee, Jin-Su
    • Geotechnical Engineering
    • /
    • v.1 no.1
    • /
    • pp.73-84
    • /
    • 1985
  • This Paper aims at investigating the distribution of stresses and the displacement of soft foundation layer subject to embankment load by the finite elements method (FEM). The stresses include the volumetric stress, the Pore water Pressure, the vertical stress. The horizontal stress and the shear stress. The Christian-Boehmer's method was selected as technique for FEM and the general elasticity model and modified Cam-clay model as the governing equations under Plain-strain condition depending on drained and undrained conditions. The results obtained are as follows: 1. The volumetric stress is almost consistent with the pore water pressure. This means that the total stress is the same value with the pore water pressure under the undrined condition 2. The vertical stress appears in the same value regardless of the drained or undrained condition and the model of the constitutive equations. 3. The horizontal stress has almost same value with the drain condition model. 4. depending on the constitutive model. The shear stress is affected by both the drain condition and the constitute model. The resulted value by the modified Cam-clay model has the largest. 5. The direction of the displacement vector turns outward near the tip of load during the increasing load. 6. The magnitude of displacement due to the modified Cam.clay model is as twice large as that due to elastic model.

  • PDF

An Analysis of Deformation on Soft Clay Layer by Model Test (모형실험에 의한 연약점토지반의 변형해석)

  • 강병선
    • Geotechnical Engineering
    • /
    • v.4 no.4
    • /
    • pp.51-60
    • /
    • 1988
  • 기초지반에 대한 응력·변형률관계를 규명하기 위하여 소성론에 기초를 둔 구성방정식이 폭넓게 이용되고 있다. 본문은 성토나 강성기초와 같은 지반구조물을 연약점토지반에 축조하였을 때에 발생하는 변형에 관해 연구코저 한 것이다. 본 연구를 위하여 2차원모형토조를 제작, 재하실험한 시료를 재하실험을통하여 침하, 융기, 측방변위등을 측정하고 이들을 여러구함식과 비교고찰하였다. 구성식으로서는 한계상태개념에 근거를 둔 Cam-clay, Modified Cam-clay그리고 시간의존성을 고려한 탄·정감성 model인 Sakiguchi model을 이용하고 이들을 수치해를 통해 고찰하였다. 본 모형실험에 의하면 변형을 예측하는데 있어서 ModifiedICam-clay model이 Original Cam-clay"model 보다 실측치에 가까웠으며 또한 시간의존성을 고려한 탄·점견성 model인 Sekiguchi model'는 본 실험에서처럼 단기간의 실험에서는 변형의 creep조건을 만족시키지 못하므로 현장조건에 따라 잘- 판단하여 적용하여 야할 것으로 판단 된다.

  • PDF

Study on Shear Characteristics of Saturated Clay by Critical State Concept (한계상태(限界狀態) 개념(槪念)에 의한 포화점토(飽和粘土)의 전단특성(剪斷特性)에 관한 연구(研究))

  • Park, Byung Ki;Jeong, Jin Sup;Lee, Moon Soo;Kang, Byung Sun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.2
    • /
    • pp.45-59
    • /
    • 1983
  • This study aims at investigating the deformation and strength characteristics on reconsolidated-remoleded saturated clay sampled at the downstream of Young-san river, in Cheollanamdo through a series of both drained and underained triaxial tests by means of the critical state concept. Among several constitutive equations developed so far, the Cam-clay model, the modified Cam-clay model and the dilatancy model are used. The prediction of strains is obtained and the value of prediction is compared with that of observation. For the clay specimen, the prediction of volumetric strain on the dilatancy model is well consistent with the observation and the prediction of shear strain on the modified Cam-clay model coincides exactly with the observation.

  • PDF

Comparison of MCC and SSC Models Based on Numerical Analysis of Consolidation Test (압밀시험의 수치해석에 의한 MCC 모델과 SSC 모델 비교)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.2
    • /
    • pp.1-12
    • /
    • 2024
  • In order to integrate two consolidation theories of Terzaghi's consolidation theory and Mesri's secondary compression theory and to identify a model suitable for analyzing stress-strain behavior over time, numerical analysis on consolidation tests were conducted using a modified cam-clay model and a soft soil creep model and the following conclusions were obtained. The results of numerical analysis applying the theory that a linear proportional relationship is established between the void ratio at logarithmic scale and the permeability coefficient at logarithmic scale is better agreement with the result of oedometer test than the results of applying constant hydraulic conductivity. The modified cam-clay model is a model that does not include secondary compression, but the slope of the normal consolidation line corresponding to the compression index of the standard consolidation test includes secondary compression, so the actual settlement curve over time is lower than the predicted value through numerical analysis. It always gets smaller. Other previous studies that applied Terzaghi's consolidation theory to consolidation test analysis showed the same results and were cross-confirmed. The soft soil creep model, which includes secondary compression in the theory, showed good agreement in all sections including secondary compression in the consolidation test results. It was judged appropriate to use a soft soil creep model when performing numerical analysis of soft clay ground.

The Consolidation Behavior on Soft Clay by Numerical Analysis (수치해석에 의한 연약지반의 압밀거동)

  • Kang, Yea Mook;Lee, Dal Won;Lim, Seong Hun;Yoon, Je Shik
    • Korean Journal of Agricultural Science
    • /
    • v.25 no.2
    • /
    • pp.235-246
    • /
    • 1998
  • This study was performed to find the effect of parameters of numerical analysis model. To find the parameters of numerical analysis model, triaxial test and consolidation test were conducted and the results were compared and analyzed with various methods. Preloaded ground was analyzed with Hyperbolic and Modified Cam-Clay models. Hyperbolic model analysis result was good agreement with measured lateral displacement, and Modified Cam-Clay model agreed more than Hyperbolic model with settlement. When the parameters of models were changed, change of settlement on center of embankment and of maximum lateral displacement on distance 5m from end of embankment were compared. On Hyperbolic model the parameter K has large influence on settlement and lateral displacement. On Modified Cam-Clay model the parameters ${\Gamma}$ and M have large influence on settlement and lateral displacement, respectively.

  • PDF