• Title/Summary/Keyword: mountain-pass lemma

Search Result 4, Processing Time 0.018 seconds

INFINITELY MANY SMALL SOLUTIONS FOR THE p(x)-LAPLACIAN OPERATOR WITH CRITICAL GROWTH

  • Zhou, Chenxing;Liang, Sihua
    • Journal of applied mathematics & informatics
    • /
    • v.32 no.1_2
    • /
    • pp.137-152
    • /
    • 2014
  • In this paper, we prove, in the spirit of [3, 12, 20, 22, 23], the existence of infinitely many small solutions to the following quasilinear elliptic equation $-{\Delta}_{p(x)}u+{\mid}u{\mid}^{p(x)-2}u={\mid}u{\mid}^{q(x)-2}u+{\lambda}f(x,u)$ in a smooth bounded domain ${\Omega}$ of ${\mathbb{R}}^N$. We also assume that $\{q(x)=p^*(x)\}{\neq}{\emptyset}$, where $p^*(x)$ = Np(x)/(N - p(x)) is the critical Sobolev exponent for variable exponents. The proof is based on a new version of the symmetric mountainpass lemma due to Kajikiya [22], and property of these solutions are also obtained.

EXISTENCE AND NON-EXISTENCE FOR SCHRÖDINGER EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS

  • Zou, Henghui
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.547-572
    • /
    • 2010
  • We study existence of positive solutions of the classical nonlinear Schr$\ddot{o}$dinger equation $-{\Delta}u\;+\;V(x)u\;-\;f(x,\;u)\;-\;H(x)u^{2*-1}\;=\;0$, u > 0 in $\mathbb{R}^n$ $u\;{\rightarrow}\;0\;as\;|x|\;{\rightarrow}\;{\infty}$. In fact, we consider the following more general quasi-linear Schr$\ddot{o}$odinger equation $-div(|{\nabla}u|^{m-2}{\nabla}u)\;+\;V(x)u^{m-1}$ $-f(x,\;u)\;-\;H(x)u^{m^*-1}\;=\;0$, u > 0 in $\mathbb{R}^n$ $u\;{\rightarrow}\;0\;as\;|x|\;{\rightarrow}\;{\infty}$, where m $\in$ (1, n) is a positive number and $m^*\;:=\;\frac{mn}{n-m}\;>\;0$, is the corresponding critical Sobolev embedding number in $\mathbb{R}^n$. Under appropriate conditions on the functions V(x), f(x, u) and H(x), existence and non-existence results of positive solutions have been established.

EXISTENCE OF SOLUTIONS FOR FRACTIONAL p&q-KIRCHHOFF SYSTEM IN UNBOUNDED DOMAIN

  • Bao, Jinfeng;Chen, Caisheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1441-1462
    • /
    • 2018
  • In this paper, we investigate the fractional p&q-Kirchhoff type system $$\{M_1([u]^p_{s,p})(-{\Delta})^s_pu+V_1(x){\mid}u{\mid}^{p-2}u\\{\hfill{10}}={\ell}k^{-1}F_u(x,\;u,\;v)+{\lambda}{\alpha}(x){\mid}u{\mid}^{m-2}u,\;x{\in}{\Omega}\\M_2([u]^q_{s,q})(-{\Delta})^s_qv+V_2(x){\mid}v{\mid}^{q-2}v\\{\hfill{10}}={\ell}k^{-1}F_v(x,u,v)+{\mu}{\alpha}(x){\mid}v{\mid}^{m-2}v,\;x{\in}{\Omega},\\u=v=0,\;x{\in}{\partial}{\Omega},$$ where ${\Omega}{\subset}{\mathbb{R}}^N$ is an unbounded domain with smooth boundary ${\partial}{\Omega}$, and $0<s<1<p{\leq}q$ and sq < N, ${\lambda},{\mu}>0$, $1<m{\leq}k<p^*_s$, ${\ell}{\in}R$, while $[u]^t_{s,t}$ denotes the Gagliardo semi-norm given in (1.2) below. $V_1(x)$, $V_2(x)$, $a(x):{\mathbb{R}}^N{\rightarrow}(0,\;{\infty})$ are three positive weights, $M_1$, $M_2$ are continuous and positive functions in ${\mathbb{R}}^+$. Using variational methods, we prove existence of infinitely many high-energy solutions for the above system.