• Title/Summary/Keyword: multi-constellation SBAS

Search Result 8, Processing Time 0.018 seconds

Analysis on the Multi-Constellation SBAS Performance of SDCM in Korea

  • Lim, Cheol-Soon;Park, Byungwoon;So, Hyoungmin;Jang, Jaegyu;Seo, Seungwoo;Park, Junpyo;Bu, Sung-Chun;Lee, Chul-Soo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.181-191
    • /
    • 2016
  • A Satellite Based Augmentation System (SBAS) provides differential correction and integrity information through geostationary satellite to users in order to reduce Global Navigation Satellite System (GNSS)-related errors such as ionospheric delay and tropospheric delay, and satellite orbit and clock errors and calculate a protection level of the calculated location. A SBAS is a system, which has been set as an international standard by the International Civilian Aviation Organization (ICAO) to be utilized for safe operation of aircrafts. Currently, the Wide Area Augmentation System (WAAS) in the USA, the European Geostationary Navigation Overlay Service (EGNOS) in Europe, MTSAT Satellite Augmentation System (MSAS) in Japan, and GPS-Aided Geo Augmented Navigation (GAGAN) are operated. The System for Differential Correction and Monitoring (SDCM) in Russia is now under construction and testing. All SBASs that are currently under operation including the WAAS in the USA provide correction and integrity information about the Global Positioning System (GPS) whereas the SDCM in Russia that started SBAS-related test services in Russia in recent years provides correction and integrity information about not only the GPS but also the GLONASS. Currently, LUCH-5A(PRN 140), LUCH-5B(PRN 125), and LUCH-5V(PRN 141) are assigned and used as geostationary satellites for the SDCM. Among them, PRN 140 satellite is now broadcasting SBAS test messages for SDCM test services. In particular, since messages broadcast by PRN 140 satellite are received in Korea as well, performance analysis on GPS/GLONASS Multi-Constellation SBAS using the SDCM can be possible. The present paper generated correction and integrity information about GPS and GLONASS using SDCM messages broadcast by the PRN 140 satellite, and performed analysis on GPS/GLONASS Multi-Constellation SBAS performance and APV-I availability by applying GPS and GLONASS observation data received from multiple reference stations, which were operated in the National Geographic Information Institute (NGII) for performance analysis on GPS/GLONASS Multi-Constellation SBAS according to user locations inside South Korea utilizing the above-calculated information.

Performance Estimation of Dual Frequency and Multi-Constellation Satellite Based Augmenation System for Korean Region (이중 주파수 및 다중 위성항법 광역보강시스템 한반도 지역 성능 예측)

  • Yun, Ho;Han, Deok-Hwa;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.17 no.4
    • /
    • pp.396-403
    • /
    • 2013
  • Recently, GNSS users can utilize various navigation satellite thanks to GPS modernization, renewal of GLONASS, and development of Galileo and Beidou. And availability performance of users is expected to be improved because these new navigation satellites transmit L5 signal as well as L1 signal, and users can directly estimate the ionospheric delays. In accordance with these changes existing Satellite Based Augmentation System (SBAS) which considers only GPS L1 signal is being developed to support dual frequency and multi-constellation GNSS users. This paper describes the main features of dual-frequency, multi-constellation SBAS algorithms and estimates the performance in Korean region by simulation.

Selection Methods of Multi-Constellation SBAS in WAAS-EGNOS Overlap Region (WAAS-EGNOS 중첩 영역 내 위성기반 보강시스템 선택 기법 연구)

  • Kim, Mingyu;Kim, Jeongrae
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.3
    • /
    • pp.237-244
    • /
    • 2019
  • Since SBAS provides users with GNSS orbit, clock, and ionospheric corrections and integrity, the more precise positioning is possible. As the SBAS service area is expanded due to the development of the SBAS and the installation of the additional ground stations, there is a region where two or more SBAS messages can be received. However, the research on multi-constellation SBAS selection method has not carried out. In this study, we compared the result of positioning accuracy after applying the SBAS correction selected by using WAAS priority, EGNOS priority, or error covariance comparison method to LEO satellites in the regions where WAAS and EGNOS signals are transmitted simultaneously. When using WAAS priority method, 3D orbit error is smallest at 2.57 m. The covariance comparison method is outperform at the center of the overlap region far from each WAAS and EGNOS stations. In the eastern region near the EGNOS stations, the 3D orbit errors using EGNOS priority method is 8% smaller than the errors using the WAAS priority method.

Prediction on the Effect of Multi-Constellation SBAS by the Application of SDCM in Korea and Its Performance Evaluation (SDCM의 국내 적용 및 성능 평가를 통한 다중 위성군 SBAS의 효과 예측)

  • Lim, Cheol-soon;Seok, Hyo-jeong;Hwang, Ho-yon;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.417-424
    • /
    • 2016
  • Russia recently began broadcasting the SDCM signal in order to provide SBAS service for the civil aviation in the Russian territory using its own geostationary satellites. The service coverage of the SDCM geostationary satellite, LUCH-5A and LUCH-5B, includes Korea peninsula, where the test signal from the pseudo random number (PRN) 140 is received. This paper shows that the position accuracy at the Chulwon GNSS site is improved to 0.8749 m (horizontal) and 0.9589 mm (vertical) by applying the received SDCM message to the RINEX data. Considering that the SDCM augments both GPS and GLONASS, the performance of multi-constellation SBAS was compared to that of GPS-only SBAS, and APV-I availability was improved by decreasing the protection level about 30 %. From the results, we can expect that the mult-constellation SBAS can contribute to the performance enhancement of the future KASS.

Technology Trends of Satellite Based Augmentation Systems (위성기반 보강항법시스템 기술 동향)

  • Jeongrae Kim;Yongrae Kim;Jongyoon Kim
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.25-34
    • /
    • 2024
  • The Satellite Based Augmentation System (SBAS) improves the accuracy and reliability of user positioning by transmitting the error correction and integrity information of the global navigation satellite system signal from geostationary satellites in real time. For this reason, SBAS was designed for aircraft operations and approach procedures and is now in operational or development stages in many countries. Time has passed since the construction of SBAS and many changes have occurred in the composition of the monitoring stations and the geostationary satellites. These changes have been investigated and the current operation and development status of SBAS globally are surveyed. The development and test schedules for the transition to dual frequency multi-constellation, an important topic in SBAS, are discussed.

Performance Analysis of Ionospheric Delay Estimation for Multi-Constellation WA-DGNSS According to the Number of Reference Stations (기준국 수에 따른 다중 위성항법 광역보정시스템의 전리층 지연 추정 성능 분석)

  • Kim, Dong-Uk;Han, Deok-Hwa;Yun, Ho;Kee, Chang-Don;Seo, Seung-Woo;Park, Heung-Won
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.260-267
    • /
    • 2014
  • For the purpose of improving the accuracy of Wide Area Differential GNSS (WA-DGNSS), estimation performance of ionospheric delay error which has a great impact on GPS error sources should be enhanced. This paper applied multi-constellation GNSS which represents GPS in USA, GLONASS in Russia, and Galileo in Europe to WA-DGNSS algorithm in order to improve performance of ionospheric delay estimation. Furthermore, we conducted simulation to analyze ionospheric delay estimation performance in Korean region by increasing the number of reference stations. Consequently, using multi-constellation GNSS to improve performance of ionospheric delay estimation is more effective than increasing the number of reference stations in spite of similar number of measurements which are in use for estimation. We expect this result can contribute to improvement for ionospheric delay estimation performance of single-frequency SBAS (Satellite Based Augmentation System) user.

Multi-constellation Local-area Differential GNSS for Unmanned Explorations in the Polar Regions

  • Kim, Dongwoo;Kim, Minchan;Lee, Jinsil;Lee, Jiyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.79-85
    • /
    • 2019
  • The mission tasks of polar exploration utilizing unmanned systems such as glacier monitoring, ecosystem research, and inland exploration have been expanded. To facilitate unmanned exploration mission tasks, precise and robust navigation systems are required. However, limitations on the utilization of satellite navigation system are present due to satellite orbital characteristics at the polar region located in a high latitude. The orbital inclination of global positioning system (GPS), which was developed to be utilized in mid-latitude sites, was designed at $55^{\circ}$. This means that as the user is located in higher latitudes, the satellite visibility and vertical precision become worse. In addition, the use of satellite-based wide-area augmentation system (SBAS) is also limited in higher latitude regions than the maximum latitude of signal reception by stationary satellites, which is $70^{\circ}$. This study proposes a local-area augmentation system that additionally utilizes Global Navigation Satellite System (GLONASS) considering satellite navigation system environment in Polar Regions. The orbital inclination of GLONASS is $64.8^{\circ}$, which is suitable in order to ensure satellite visibility in high-latitude regions. In contrast, GLONASS has different system operation elements such as configuration elements of navigation message and update cycle and has a statistically different signal error level around 4 m, which is larger than that of GPS. Thus, such system characteristics must be taken into consideration to ensure data integrity and monitor GLONASS signal fault. This study took GLONASS system characteristics and performance into consideration to improve previously developed fault detection algorithm in the local-area augmentation system based on GPS. In addition, real GNSS observation data were acquired from the receivers installed at the Antarctic King Sejong Station to analyze positioning accuracy and calculate test statistics of the fault monitors. Finally, this study analyzed the satellite visibility of GPS/GLONASS-based local-area augmentation system in Polar Regions and conducted performance evaluations through simulations.

Review of GPS and Galileo Integrity Assurance Procedure (GPS와 Galileo의 무결성 보장 방법 조사)

  • Namkyu Woo;Gihun Nam;Heonho Choi;Jiyun Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.13 no.1
    • /
    • pp.53-61
    • /
    • 2024
  • Global Navigation Satellite Systems are expected to meet system-defined integrity requirements when users utilize the system for safety critical applications. While the guaranteed integrity performance of GPS and Galileo is publicly available, their integrity assurance procedure and related methodology have not been released to the public in an official document format. This paper summarizes the integrity assurance procedures of Global Positioning System (GPS) and Galileo, which were utilized during their system development, through a literature survey of their integrity assurance methodology. GPS Block II assures system integrity using the following methods: continuous performance monitoring and maintenance on Space Segment (SS) and Control Segment (CS), through a cause and effect analysis of anomalies and a failure analysis. In GPS Block III, to achieve more stringent integrity performance, safety requirements are integrated into the system design and development from its starting phase to the final phase. Galileo's integrity performance is provided in the Integrity Support Message (ISM) format, as Galileo utilizes a Dual Frequency Multi Constellation (DFMC) Satellite Based Augmentation System (SBAS) and Advanced Receiver Autonomous Integrity Monitoring (ARAIM) to serve safety critical applications. The integrity performance of Galileo is ensured by using a methodology similar to GPS Block II (i.e. continuous performance monitoring and maintenance on the system). The integrity assurance procedures reviewed in this paper can be utilized for a new satellite navigation system that will be developed in the near future.