• Title/Summary/Keyword: multi-item optimal

Search Result 28, Processing Time 0.032 seconds

Optimal Solution and Comparison for the Augmented Multi-item Random Orders (복수품목 랜덤 결함주문정책의 최적해와 비교)

  • 권희철;김만식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.10 no.16
    • /
    • pp.129-132
    • /
    • 1987
  • Multi-item inventory problems can be well characterized by the nature of interaction of the quantities and timing. This interaction may be due to the effect of certain combination of orders. It is that the set-up cost of ordering individual items can be saved by jointly ordering at a time. This study finds a decision criteria of optimum inventory policy through the comparisons of individual multi-item order policy(IMP), joint multi-item order policy(JMP), augmented multi-item order policy(AMP) in cost ratio. Subsequently we assume that there exists a unique optimum order level corresponding to an optimum reorder range for the augmented multi-item order, at which a cost saying is maximum.

  • PDF

Review of Studies on V-METRIC Related Models (V-METRIC 관련연구들에 관한 고찰)

  • Kim, Yoon Hwa;Lee, Sung Yong
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.2
    • /
    • pp.47-57
    • /
    • 2016
  • As the inventory costs of repairable items in military logistics continue to increase, many studies for optimal inventory level of these items are being carried out in advanced countries, including the US, to reduce these costs. Research on inventory level optimization for repairable items aimed to achieve the availability goal of a system with a MIME(Multi Indenture Multi Echelon) repair policy structure first began with Sherbrooke's METRIC and developed into various types. This research is to analyze and compare recent V-METRIC related studies to search for another variation in this field. This paper mainly looks at how to determine optimum inventory level for each repairable item to achieve a specific availability target within a limited budget, and also how to minimize inventory cost while achieving its availability target by determining optimal inventory level of each repairable item.

An Algorithm for Optimal Inventory Level in Multi - Echelon Repairable - Item Inventory System with General Service Time distribution (일반 서비스 시간 분포를 갖는 다단계 수리가능 재고 시스템에 대한 최적재고수준 알고리듬)

  • Kim, Tai-Young;Kim, Jong-Soo;Hur, Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.27 no.3
    • /
    • pp.226-232
    • /
    • 2001
  • This paper presents an efficient method for the problem of determining the spare inventory level of a multi-echelon repairable-item inventory system. We consider the system with two levels of inventory, two levels of service and with a general service time distribution. We propose an algorithm that determines the spare inventory level to satisfy the minimum fill rate with the minimum cost. Experimental results show that the algorithm is accurate and efficient.

  • PDF

Multi -Criteria ABC Inventory Classification Using Context-Dependent DEA (컨텍스트 의존 DEA를 활용한 다기준 ABC 재고 분류 방법)

  • Park, Jae-Hun;Lim, Sung-Mook;Bae, Hye-Rim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.69-78
    • /
    • 2010
  • Multi-criteria ABC inventory classification is one of the most widely employed techniques for efficient inventory control, and it considers more than one criterion for categorizing inventory items into groups of different importance. Recently, Ramanathan (2006) proposed a weighted linear optimization (WLO) model for the problem of multi-criteria ABC inventory classification. The WLO model generates a set of criteria weights for each item and assigns a normalized score to each item for ABC analysis. Although the WLO model is considered to have many advantages, it has a limitation that many items can share the same optimal efficiency score. This limitation can hinder a precise classification of inventory items. To overcome this deficiency, we propose a context-dependent DEA based method for multi-criteria ABC inventory classification problems. In the proposed model, items are first stratified into several efficiency levels, and then the relative attractiveness of each item is measured with respect to less efficient ones. Based on this attractiveness measure, items can be further discriminated in terms of their importance. By a comparative study between the proposed model and the WLO model, we argue that the proposed model can provide a more reasonable and accurate classification of inventory items.

Applying Genetic Algorithm for Can-Order Policies in the Joint Replenishment Problem

  • Nagasawa, Keisuke;Irohara, Takashi;Matoba, Yosuke;Liu, Shuling
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In this paper, we consider multi-item inventory management. When managing a multi-item inventory, we coordinate replenishment orders of items supplied by the same supplier. The associated problem is called the joint replenishment problem (JRP). One often-used approach to the JRP is to apply a can-order policy. Under a can-order policy, some items are re-ordered when their inventory level drops to or below their re-order level, and any other item with an inventory level at or below its can-order level can be included in this order. In the present paper, we propose a method for finding the optimal parameter of a can-order policy, the can-order level, for each item in a lost-sales model. The main objectives in our model are minimizing the number of ordering, inventory, and shortage (i.e., lost-sales) respectively, compared with the conventional JRP, in which the objective is to minimize total cost. In order to solve this multi-objective optimization problem, we apply a genetic algorithm. In a numerical experiment using actual shipment data, we simulate the proposed model and compare the results with those of other methods.

Multi-Item Inventory Problems Revisited Using Genetic Algorithm

  • Das, Prasun
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.29-46
    • /
    • 2007
  • This paper makes an attempt to compare the two important methods for finding solutions of multi-item inventory problem with more than one conflicting objectives. Panda et al.[9] discusses a distance-based method to find the best possible compromise solution with variation of priority under the given weight structure. In this paper, the problem in [9] is revisited through the Pareto-optimal front of genetic algorithm with the help of a situation of retail stocking of FMCG business. The advantages of using the solutions from the perspective of the decision maker obtained through multi-objective optimization are highlighted in terms of population search, weighted goals and priority structure, cost, set of compromise solutions along with prevention of stock-out situation.

Analysis of Multi-Level Inventory Distribution System for an Item with Low Level of Demand

  • Lee, Jin-Seok;Yoon, Seung-Chul
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.11-22
    • /
    • 2000
  • The main objective of this research is to analyze an order point and an order quantity of a distribution center and each branch to attain a target service level in multi-level inventory distribution system. In case of product item, we use the item with low volume of average monthly demand. Under the continuous review method, the distribution center places a particular order quantity to an outside supplier whenever the level of inventory reaches an order point, and receives the order quantity after elapsing a certain lead time. Also, each branch places an order quantity to the distribution center whenever the level of inventory reaches an order point, and receives the quantity after elapsing a particular lead time. When an out of stock condition occurs, we assume that the item is backordered. For considering more realistic situations, we use generic type of probability distribution of lead times. In the variable lead time model, the actually achieved service level is estimated as the expected service level. Therefore, this study focuses on the analysis of deciding the optimal order point and order quantity to achieve a target service level at each depot as a expected service level, while the system-wide inventory level is minimized. In addition, we analyze the order level as a maximum level of inventory to suggest more efficient way to develop the low demand item model.

  • PDF

Multi-criteria shape design of crane-hook taking account of estimated load condition

  • Muromaki, Takao;Hanahara, Kazuyuki;Tada, Yukio
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.707-725
    • /
    • 2014
  • In order to improve the crane-hook's performance and service life, we formulate a multi-criteria shape design problem considering practical conditions. The structural weight, the displacement at specified points and the induced matrix norm of stiffness matrix are adopted as the evaluation items to be minimized. The heights and widths of cross-section are chosen as the design variables. The design variables are expressed in terms of shape functions based on the Gaussian function. For this multi-objective optimization problem with three items, we utilize a multi-objective evolutionary algorithm, that is, the multi-objective Particle Swarm Optimization (MOPSO). As a common feature of obtained solutions, the side views are tapered shapes similar to those of actual crane-hook designs. The evaluation item values of the obtained designs demonstrate importance of the present optimization as well as the feasibility of the proposed optimal design approach.

A Study on Dynamic Lot Sizing Problem with Random Demand (확률적 수요를 갖는 단일설비 다종제품의 동적 생산계획에 관한 연구)

  • Kim, Chang Hyun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.31 no.3
    • /
    • pp.194-200
    • /
    • 2005
  • A stochastic dynamic lot sizing problem for multi-item is suggested in the case that the distribution of the cumulative demand is known over finite planning horizons and all unsatisfied demand is fully backlogged. Each item is produced simultaneously at a variable ratio of input resources employed whenever setup is incurred. A dynamic programming algorithm is proposed to find the optimal production policy, which resembles the Wagner-Whitin algorithm for the deterministic case problem but with some additional feasibility constraints.

Optimum Inventory Level and optimal Selling Price to Realize a Pre-determined Level of Profit

  • Kang, Suk-Ho;Noh, Seung-Jong
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.12 no.1
    • /
    • pp.43-48
    • /
    • 1986
  • In this paper, the one period multi-item inventory model is considered in which it is required to determine the production quantity and selling price of each item which maximize the probability of realizing predetermined level of profit. The objective function of this model is the sum of weighted probabilities which represent the possibility of obtaining the predetermined level of profit for each item. Budget constraint, inventory site constraint and constraints of price are considered. Finally this paper shows a numerical example in which random demand of each item has exponential distribution.

  • PDF