• Title/Summary/Keyword: nitric oxide synthase

Search Result 1,530, Processing Time 0.033 seconds

Inhibition of Nitric Oxide Synthesis by 8-epi-xanthatin in Activated RAW 264.7 Cells (활성화한 RAW 264.7 세포주에서 8-epi-xanthatin의 Nitric Oxide 생성저해)

  • Lee, Hwa-Jin;Jeong, Yeon-Su;Ryu, Shi-Yong;Ryu, Jae-Ha
    • YAKHAK HOEJI
    • /
    • v.42 no.5
    • /
    • pp.540-543
    • /
    • 1998
  • The nitric oxide (NO) produced in large amounts by inducible nitric oxide synthase is known to be responsible for the vasodilation and hypotension observed in septic shock. We have found that 8-epi-xanthatin from Xanthium strumarium L. inhibited the production of NO in LPS-activated RAW 264.7 cells ($IC_{50}$ value was 1.5 ${\mu}$M). This activity was resulted from the suppressing of inducible nitric oxide synthase enzyme expression.

  • PDF

Expression of Vascular Endothelin-1 and Nitric Oxide Synthase in Fructose-fed Hypertensive Rats (과당식이 고혈압 흰쥐에서 혈관 Endothelin-1과 산화질소합성효소의 발현)

  • Paek, Yun-Woong;Kim, Myung-Hoon
    • Journal of Korean Physical Therapy Science
    • /
    • v.9 no.4
    • /
    • pp.45-52
    • /
    • 2002
  • Rats that are fed a fructose-rich diet develop hypertension, insulin resistance, and hypertriglyceridemia. To elucidate whether altered expression levels of endothelin-1 and nitric oxide synthase are related to the development of insulin-resistant hypertension, we examined the present study. Male Sprague-Dawley rats were fed a fructose-rich diet for 5 weeks. Systolic blood pressure significantly increased in fructose-fed rats. While serum free fatty acid and plasma nitrite/nitrate levels did not significantly differ between the fructose-fed and control groups, plasma insulin and serum triglyceride concentrations significantly increased in the former. Endothelin-1 mRNA expression in the aorta increased in fructose-fed rats. Neither the protein expression of constitutive nitric oxide synthase nor that of inducible nitric oxide synthase were significantly affected by fructose feeding. However, nitrite/nitrate levels in the aorta were significantly increased. These results suggest that an increase in vascular endothelin-1 is an important contributing factor to the development of hypertension in fructose-fed rats. However, the vascular nitric oxide pathway may not be causally related to the development of fructose-induced hypertension.

  • PDF

Elevation of Nitric Oxide Synthase Activity by Dimethyladenosine from Silkworm Pupae in Aged Rats

  • Ahn, Mi-Young;Han, Jea-Woong;Hong, Yoo-Na;Hwang, Jae-Sam
    • Toxicological Research
    • /
    • v.24 no.3
    • /
    • pp.169-174
    • /
    • 2008
  • This study examined the mechanisms underlying the effects of the vasorelaxation active substance(VAS), dimethyladenosine-5'-L-arabinose, and its partial purification fraction on nitric oxide synthase in improving erectile dysfunction with particular focus on the nitric oxide (NO)-cGMP pathways. Two rat models, 9-month-old SD rats and 11-month-old SD rats, were given VAS(40 mg/kg per day) for 4 days, The aqueous fraction of silworm male pupae extract; semi-purified VAS(100 mg/kg per day) for 10 days, respectively. The NOS activities of the following three enzymes were examined: neuronal NO synthase(nNOS), inducible NOS(iNOS), endothelial NOS(eNOS), vascular endothelial growth factor on endothelial cells(VEGF) and anti-inflammation effect of Tumor necrosis factor-$\alpha$. The results showed increases in the nitric oxide synthase activities. Western blotting of the tissue homogenate showed an increase in the nNOS level in the brain and tongue, and an increase in the endothelial NO synthase(eNOS) level in penis. However, there was little association with VEGF production in HUVEC endothelial cells and no relationship with TNF-$\alpha$ which showed low levels.

Effect of Cnidii Rhizoma on Proliferation of Breast Cancer Cell, Nitric Oxide Production and Ornithine Decarboxylase Activity (천궁이 유방암세포 증식, Nitric Oxide 생성 및 Ornithine Decarboxylase 활성에 미치는 영향)

  • Nam, Kyung-Soo;Son, Ok-Lye;Lee, Kyung-Hwa;Cho, Hyun-Jung;Shon, Yun-Hee
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.4 s.139
    • /
    • pp.283-287
    • /
    • 2004
  • The effect of water extract from Cnidii Rhizoma (CRW) on proliferation of human breast cancer cells, nitric oxide production, nitric oxide synthase expression, and ornithine decarboxylase activity was tested. CRW inhibited the growth of both estrogen-dependent MCF-7 and estrogen-independent MDA-MB-23I human breast cancer cells. Lipopolysaccharide-induced nitric oxide (NO) production was significantly reduced by CRW at the concentration of 0.5, 1.0 and 5.0 mg/ml. Expression of inducible nitric oxide synthase (iNOS) was also suppressed with the treatment of CRW in Raw 264.7 cells. CRW inhibited induction of ornithine decarboxylase by 12-0-tetradecanoylphorbol-13-acetate, a key enzyme of polyamine biosynthesis, which is enhanced in tumour promotion. Therefore, CRW is worth further investigation with respect to breast cancer chemoprevention or therapy.

Upregulation of Nitric Oxide Synthase Activity by All-trans Retinoic Acid and 13-cis Retinoic Acid in Human Malignant Keratinocytes

  • Moon, Ki-Young
    • Biomedical Science Letters
    • /
    • v.25 no.2
    • /
    • pp.196-200
    • /
    • 2019
  • Effect of retinoids, i.e., all-trans retinoic acid and 13-cis retinoic acid, on the activity of nitric oxide synthase (NOS) was evaluated in human malignant keratinocytes to examine the possible correlation of retinoids with NOS activities. All-trans retinoic acid and 13-cis retinoic acid did not alter the nitric oxide (NO) production. However, in the presence of lipopolysaccharide (LPS, $1{\mu}g/mL$), they significantly increased NO release in a dose-dependent manner until 48 h at concentrations of $50{\sim}100{\mu}M$. The degree of upregulation of NO by all-trans retinoic acid and 13-cis retinoic acid increased up to 35% and 37%, respectively, compared to that by the control, which demonstrated the upregulation of LPS-inducible nitric oxide synthase (iNOS)-dependent generation of NO as well as showing a crucial link between retinoids-induced activity and NOS. Findings of this study now suggest that the upregulation of LPS-iNOS activity may be associated with modulation of retinoids-induced control of cellular developmental processes, which may produce new therapeutics of retinoids in the complexity of how NO affects human keratinocytes.

Inhibitory Effect of Esculetin on the Inducuble Nitric Oxide Synthase Expression in TNF-stimulated 3T3-L1 Adipocytes

  • Yang, Jeong-Yeh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.283-287
    • /
    • 2003
  • While nitric oxide (NO) produced by inducible nitric oxide synthase (iNOS) is beneficial for host survival, it is also detrimental to the host. Thus, regulation of iNOS gene expression may be an effective therapeutic strategy for the prevention of unwanted reactions at various pathologic conditions. During the screening process for the possible iNOS regulators, we observed that esculetin is a potent inhibitor of cytokine-induced iNOS expression. The treatment of 3T3-L1 adipocytes with the tumor necrosis factor-${\alpha}$ (TNF) induced iNOS expression, leading to enhanced NO production. TNF-induced NO production was inhibited by esculetin in a dose-dependent manner. Esculetin inhibited the TNF-induced NO production at the transcriptional level through suppression of iNOS mRNA and subsequent iNOS protein expression. These results suggest esculetin, a component of natural products, as a naturally occurring, nontoxic means to attenuate iNOS expression and NO-mediated cytotoxicity.

Expression and localization of endothelial and inducible nitric oxide synthase in bovine uterus (소 자궁에서 endothelial nitric oxide synthase(NOS) 및 inducible NOS의 발현)

  • Lee, Yongduk;Kim, Seungjoon;Moon, Changjong;Shin, Taekyun
    • Korean Journal of Veterinary Research
    • /
    • v.43 no.4
    • /
    • pp.551-554
    • /
    • 2003
  • Nitric oxide synthase (NOS) has been reported in uterus. We examined the expression of the NOS isoforms, constitutive endothelial (eNOS) and inducible NOS (iNOS), in bovine uterus by immunohistochemistry. eNOS immunoreactivity was localized predominantly to the endothelial cells that line uterine microvessels and to endometrial glandular epithelial cells, but was barely detectable in endometrial stromal cells. iNOS immunostaining was detected in glandular epithelial and stromal cells in the endometrium and in the endothelial cells of myometrial blood vessels. These findings suggest that both eNOS and iNOS may play important roles in the physiology of the uterus, possibly by generating NO.

Anti-inflammatory Effects of Asiaticoside on Inducible Nitric Oxide Synthase and Cyclooxygenase-2 in RAW 264.7 Cell Line (Asiaticoside가 RAW 264,7 세포에서 Inducible nitric oxide synthase와 Cyclooxygenase-2에 미치는 항염증 작용에 관한 연구)

  • 주상섭;배옥남;정진호
    • Toxicological Research
    • /
    • v.19 no.1
    • /
    • pp.33-37
    • /
    • 2003
  • Asiaticoside has been tested for the ability as an anti-inflammatory drug using lipopolysaccharide (LPS)-stimulated macrophage cell line (RAW 264.7 cell). LPS treatment induced dramatically inducible nitric oxide synthase (iNOS) in RAW cells. However, asiaticoside inhibited LPS-stimulated iNOS induction in a concentration-dependent manner. Especially, higher concentrations (>50 $\mu\textrm{M}$) of asiaticoside completely blocked iNOS induction. In addition, LPS-stimulated expression of inducible cyclooxygenase (COX-2) and interleukin-1 $\alpha$ (IL-1 $\alpha$) was inhibited by asiaticoside treatment. Asiaticoside up to 50 $\mu\textrm{M}$ still required to inhibit COX-2 and IL-1 $\alpha$ induced by LPS. Consistent with these findings, treatment with asiaticoside suppressed do novo synthesis and cellular accumulation of prostaglandin $E_2$ to a lesser extent, suggesting that asiaticoside blocked the induction as well as the activity of COX-2 These results suggest the possibility that asiaticoside may be effective therapeutic agents for septic shock and other inflammatory diseases.

Biosynthesis of Nitric Oxide in Pancreatic Tissues (췌조직내 Nitric Oxide의 생합성)

  • Kim, Yong-Kee;Nam, Suk-Woo;Park, Seung-Hee;Yoo, Se-Geun;Hong, Sung-Youl;Lee, Hyang-Woo
    • YAKHAK HOEJI
    • /
    • v.38 no.1
    • /
    • pp.24-30
    • /
    • 1994
  • Nitric oxide(NO) synthase was identified and characterized by determining the L-citrulline formed in the NO-Arg pathway in pancreatic tissues. NO synthase activities in chicken pancreas were dependent upon the concentration of L-Arg which is the substrate molecule for the NO synthase, the amount of the enzyme protein used, and linearly on the incubation time. NO synthase in mouse pancreas was found to be constitutive, not induced by lipopolysaccharide treatment. In vitro NO synthase activities of chicken pancreas were inhibited 36%, 21%, 12% and 44% by $200\;{\mu}M$ of MMA, DMA, D'MA and NAME respectively. These results suggest the presence of NO and NO synthase in the pancreas.

  • PDF

Changes of Specific Activity and Regulation of Nitric Oxide Synthase during Liver Regeneration after Partial Hepatectomy

  • Lee, Young-Jin;Nam, Suk-Woo;Seo, Dong-Wan;An, Sung-Whun;Ko, Young-Kwun;Sung, Dae-Seok;Han, Jung-Whan;Lee, Hyang-Woo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.185-185
    • /
    • 1996
  • Nitric oxide synthase(NO Synthase:E.C.1.14.13.39)는 생체내에서 L-arginine을 기질로 하여 citrulline과 nitric oxide(NO)를 생성하는 효소로서, 최근 연구에 의하면 2/3 부분 간 절제술 후 prereplicative phase동안에 발현되는 것으로 알려져 있다. 한편, 생체내에서 NO Synthase에 상경적 길항제인 methylarginine에 관해서도 수년간 많은 연구가 진행되어 왔다. 이들의 생성 기전은 protein methylation에 의해 생성된 methylated protein이 생체 내에서 분해되어 생성된다고 알려져 있으나, 정확한 기전에 대해서는 아직 논란의 여지가 많다. 따라서, 본 연구에서는 In vivo 실험을 통해 부분 간 절제술 후 시간대별로 간 조직에서의 NO Synthase 활성도와 혈청에서 NO의 최종 대사물인 Nitrite/Nitrate를 측정하였으며, 또한 NO Synthase 조절에 관여하는 세포내 기질인 arginine과 억제 인자인 methylarginine함량을 간 조직 및 혈청에서 측정하고, 세포 신호 전달체계에 관여하는 cyclic GMP 함량을 측정함으로써, 부분 간 절제술 후 간 재생동안에 NO Synthase 활성도와 methylarginine 및 arginine과의 상관 관계를 규명하고, 간 재생동안, 생성된 nitric oxide의 역할을 연구하려한다.

  • PDF