• Title/Summary/Keyword: operational matrices

Search Result 34, Processing Time 0.021 seconds

A New Block Pulse Operational Matrices Improved by The Second Order Lagrange Interpolation Polynomial (Lagrange 이차 보간 다항식을 이용한 새로운 일반형 블럭 펄스 적분 연산 행렬)

  • 심재선;김태훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.6
    • /
    • pp.351-358
    • /
    • 2003
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives the related integration operational matrices and generalized integration operational matrix by using the Lagrange second order interpolation polynomial.

A Block Pulse Operational Matrices by Interpolation Polynomial (보간 다항식을 이용한 일반형 블록펄스 적분연산행렬)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07e
    • /
    • pp.45-48
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently. it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices.

  • PDF

Analysis of Linear Time-invariant System by Using a New Block Pulse Operational Matrices (새로운 일반형 블럭 펄스 적분 연산 행렬을 이용한 선형 시불변 시스템 해석)

  • Lee, Hae-Ki;Kim, Tai-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.4
    • /
    • pp.175-182
    • /
    • 2004
  • This paper presents a new method for finding the Block Pulse series coefficients, deriving the Block Pulse integration operational matrices and generalizing the integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of state estimation or parameter identification more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and integral operational matrices. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives generalized integration operational matrix and applied the matrix to the analysis of linear time-invariant system.

A Derivation of Operational Matrices via Improved Block Pulse Coefficients Estimation Method (개선된 블럭 펄스 계수 추정 기법을 이용한 적분 연산 행렬 유도)

  • Kim, Tai-Hoon;Shim, Jae-Sun;Lee, Hae-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2277-2279
    • /
    • 2003
  • This paper presents a new method for finding the Block Pulse series coefficients and deriving the Block Pulse integration operational matrices which are necessary for the control fields using the Block Pulse functions. This paper presents the method for improving the accuracy of the Block Pulse series coefficients and derives the related integration operational matrices by using the Lagrange second order interpolation polynomial and expands that matrix to general form.

  • PDF

Study on The Integration Operational Metrices Improved by The Lagrange Second Order Interpolation Polynomial (Lagrange 이차 보간 다앙식을 이용한 개선된 적분 연산 행렬에 관한 연구)

  • Kim, Tai-Hoon;Lee, Hae-Ki;Chung, Je-Wook
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.7
    • /
    • pp.286-293
    • /
    • 2002
  • This paper presents a new method for finding the Block Pulse series coefficients and deriving the Block Pulse integration operational matrices which are necessary for the control fields using the Block Pulse functions. In order to apply the Block Pulse function technique to the problems of continuous-time dynamic systems more efficiently, it is necessary to find the more exact value of the Block Pulse series coefficients and drives the related integration operational matrices by using the Lagrange second order interpolation polynomial.

Identification of Time-varying Parameters of Bilinear Systems via Extended Block Pulse Operational Matrices (직교 함수 적분 연산 행렬을 이용한 분포정수계의 시변 파라미터 추정)

  • Ahn, Du-Su;Kim, Tai-Hoon;Han, Sang-Uk;Lee, Jae-Chun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.829-831
    • /
    • 1999
  • This paper considers the problem of identifying the time-varying parameters of Bilinear systems. The Parameters, in this paper, are identified by using the EBPOMs (Extended Block Pulse Operational Matrices) which can reduce the burden of operation and the volume of error caused by matrices multiplication

  • PDF

Identification of Time-varying Parameters of Bilinear Systems via Extended Block Pulse Operational Matrices (확장된 블록펄스 연산 행렬을 이용한 쌍일차계의 시변 파라미터 추정)

  • Ahn, Du-Su;Kim, Tai-Hoon;In, Don-Ki;Lee, Seung
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.826-828
    • /
    • 1999
  • This paper considers the problem of identifying the time-varying parameters of Bilinear systems. The Parameters, in this paper, are identified by using the EBPOMs (Extended Block Pulse Operational Matrices) which can reduce the burden of operation and the volume of error caused by matrices multiplication

  • PDF

Identification of Time-varying Parameters of Bilinear Systems via Extended Block Pulse Operational Matrices (확장된 블록 펄스 연산 행렬을 이용한 쌍일차계의 시변 파라미터 추정)

  • Kim, Tai-Hoon;Kim, Jin-Tae;Lee, Seung;Lee, Myoung-Kyu;Ahn, Doo-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.8
    • /
    • pp.384-391
    • /
    • 2001
  • This paper considers the problem of identifying the time-varying parameters of Bilinear systems. The Parameters, in this paper, are identified by using the EBPOMs(Extended Block Pulse Operational Matrices) which can reduce the burden of operation and the volume of error caused by matrices multiplication.

  • PDF

Identification of Time-invariant Parameters of Distributed Systems via Extended Block Pulse Operational Matrices (확장된 블록 펄스 연산 행렬을 이용한 분포정수계의 시불변 파라미터 추정)

  • Kim, Tae-Hoon;Lee, Seung;Kim, Jong-Boo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.15 no.6
    • /
    • pp.82-88
    • /
    • 2001
  • This paper considers the problem of the identification of the time invariant parameters of distributed systems. In general, the parameters are identified by using the CBPOM(Conventional Block Pulse Operational Matrices), but in this paper, the parameters ard identified by using the EBPOMS(Extended Block Pulse Operational Matrices) which can reduce the burden of operation md the volume of error caused by matrices multiplication. The simulation cloves the effectiveness of the proposed method.

  • PDF

A MATRIX FORMULATION OF THE MIXED TYPE LINEAR VOLTERRA-FREDHOLM INTEGRAL EQUATIONS

  • Fazeli, S.;Shahmorad, S.
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.5_6
    • /
    • pp.1409-1420
    • /
    • 2011
  • In this paper we present an operational method for solving linear Volterra-Fredholm integral equations (VFIE). The method is con- structed based on three matrices with simple structures which lead to a simple and high accurate algorithm. We also present an error estimation and demonstrate accuracy of the method by numerical examples.