• Title/Summary/Keyword: operator semi-stability

Search Result 9, Processing Time 0.019 seconds

Characterization of Some Classes of Distributions Related to Operator Semi-stable Distributions

  • Joo, Sang Yeol;Yoo, Young Ho;Choi, Gyeong Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.1
    • /
    • pp.177-189
    • /
    • 2003
  • For a positive integer m, operator m-semi-stability and the strict operator m-semi-stability of probability measures on R^d$ are defined. The operator m-semi-stability is a generalization of the definition of operator semi-stability with exponent Q. Characterization of strictly operator na-semi-stable distributions among operator m-semi-stable distributions is given. Translation of strictly operator m-semi-stable distribution is discussed.

Characterization of some classes of distributions related to operator semi-stable distributions

  • Joo, Sang-Yeol;Choi, Gyeong-Suk
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2002.11a
    • /
    • pp.221-225
    • /
    • 2002
  • For a positive integer m, operator m-semi-stability and the strict operator m-semi-stability of probability measures on $R^{d}$ are defined. The operator m-semi-stability is a generalization of the definition of operator semi- stability with exponent Q. Translation of strictly operator m-semi-stable distribution is discussed.

  • PDF

CHARACTERIZATION OF STRICTLY OPERATOR SEMI-STABLE DISTRIBUTIONS

  • Choi, Gyeong-Suk
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.101-123
    • /
    • 2001
  • For a linear operator Q from R(sup)d into R(sup)d and 0$\alpha$ and parameter b on the other. characterization of strictly (Q,b)-semi-stable distributions among (Q,b)-semi-stable distributions is made. Existence of (Q,b)-semi-stable distributions which are not translation of strictly (Q,b)-semi-stable distribution is discussed.

  • PDF

REPRESENTATION OF OPERATOR SEMI-STABLE DISTRIBUTIONS

  • Choi, Gyeong-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.135-152
    • /
    • 2000
  • For a linear operator Q from $R^{d}\; into\; R^{d},\; {\alpha}\;>0\; and\ 0-semi-stability and the operater semi-stability of probability measures on $R^{d}$ are defined. Characterization of $(Q,b,{\alpha})$-semi-stable Gaussian distribution is obtained and the relationship between the class of $(Q,b,{\alpha})$-semi-stable non-Gaussian distributions and that of operator semistable distributions is discussed.

  • PDF

REMARKS ON GAUSSIAN OPERATOR SEMI-STABLE DISTRIBUTIONS

  • Chae, Hong Chul;Choi, Gyeong Suk
    • Korean Journal of Mathematics
    • /
    • v.8 no.2
    • /
    • pp.111-119
    • /
    • 2000
  • For a linear operator Q from $R^d$ into $R^d$. ${\alpha}$ > 0 and 0 < $b$ < 1, the Gaussian (Q, $b$, ${\alpha}$)-semi-stability of probability measures on $R^d$ is investigated.

  • PDF

A NOTE ON SEMI-SELFDECOMPOSABILITY AND OPERATOR SEMI-STABILITY IN SUBORDINATION

  • Choi, Gyeong-Suk;Kim, Yun-Kyong;Joo, Sang-Yeol
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.483-490
    • /
    • 2010
  • Some results on inheritance of operator semi-selfdecomposability and its decreasing subclass property from subordinator to subordinated in subordination of a L$\acute{e}$evy process are given. A main result is an extension of results of [5] to semi-selfdecomposable subordinator. Its consequence is discussed.

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

SOME FREDHOLM THEORY RESULTS AROUND RELATIVE DEMICOMPACTNESS CONCEPT

  • Chaker, Wajdi;Jeribi, Aref;Krichen, Bilel
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.313-325
    • /
    • 2021
  • In this paper, we provide a characterization of upper semi-Fredholm operators via the relative demicompactness concept. The obtained results are used to investigate the stability of various essential spectra of closed linear operators under perturbations belonging to classes involving demicompact, as well as, relative demicompact operators.

On ϑ-quasi-Geraghty Contractive Mappings and Application to Perturbed Volterra and Hypergeometric Operators

  • Olalekan Taofeek Wahab
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.45-60
    • /
    • 2023
  • In this paper we suggest an enhanced Geraghty-type contractive mapping for examining the existence properties of classical nonlinear operators with or without prior degenerates. The nonlinear operators are proved to exist with the imposition of the Geraghty-type condition in a non-empty closed subset of complete metric spaces. To showcase some efficacies of the Geraghty-type condition, convergent rate and stability are deduced. The results are used to study some asymptotic properties of perturbed integral and hypergeometric operators. The results also extend and generalize some existing Geraghty-type conditions.