• 제목/요약/키워드: phase encoding direction

검색결과 15건 처리시간 0.021초

Effectiveness of a Turbo Direction Change for Reduction of Motion Artifact in Magnetic Resonance Enterography

  • Choi, Kwan-Woo;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • 제21권3호
    • /
    • pp.421-424
    • /
    • 2016
  • The purpose of this study is to evaluate an effectiveness of switching turbo direction to improve motion artifacts of small bowels and aorta. From June to October 2015, 60 patients suspected of having Crohn's disease were enrolled. The MR Enterography scans were performed using same protocol other than the turbo direction: with the Z phase encoding (group A) and with Y phase encoding (group B). Qualitative analysis of each group was performed to evaluate the effectiveness of switching turbo direction from Z to Y. As a result, the 5-point Likert scale for paired observers were $2.33{\pm}0.88$ for group A and $3.80{\pm}0.85$ for group B on dynamic contrast enhanced coronal images. In conclusion, group B is proved to be superior to group A and can lessen the motion artifacts derived from phase shifts.

MR PC 영상을 이용한 유체 흐름 분석 (Measurement of Flow Velocity and Flow Visualization with MR PC Image)

  • 김수정;이동혁;민병구
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1997년도 춘계학술대회
    • /
    • pp.127-130
    • /
    • 1997
  • Phase-contrast(PC) methods have been used for quantitative measurements of velocity and volume flow rate. In addition, phase contrast cine magnetic resonance imaging (MRI) combines the flow dependent contrast of PC MRI with the ability of cardiac cine imaging to produce images throughout the cardiac cycle. In this method, the through-plane velocity has been encoded generally. However, the accuracy of the flow data can be reduced by the effect of flow direction, finite slice thickness, resolution, pulsatile flow pattern, and so on. In this study we calculated the error caused by misalignment of tomographic plane and flow directon. To reduce this error and encode the velocity for more complex flow, we suggested 3 directional velocity encoding method.

  • PDF

촬상단면내의 MRI 체동 아티팩트의 제거 (Cancellation of MRI Motion Artifact in Image Plane)

  • 김응규
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권4호
    • /
    • pp.432-440
    • /
    • 2000
  • 본 연구에서는 촬상단면 내의 평행이동에 기인한 MRI 아티팩트를 제거하는 새로운 알고리즘으로서, 수렴에 대한 보증이 없는 기존의 반복적인 위상탐색에 의한 알고리즘과는 달리, MRI 촬상원리에 근거한 체동량을 탐색하기 위한 직접적인 방법이 제안된다. 기존의 접근방법에는 x(read out) 방향과 y(phase encoding) 방향의 체동이 동시에 탐색되었다. 하지만 x 방향과 y 방향에 대한 각각의 체동특성이 서로 다르기 때문에 본 방법에서는 이들의 체동특성의 해석에 기초해서 두 단계의 서로 다른 알고리즘을 적용함으로써 x 방향과 y 방향의 각 체동이 제거된다. 우선, x 방향의 체동은 MRI 신호의 x 방향 스펙트럼 변위에 해당하고, 그 스펙트럼의 비제로 영역(non-zero area)은 밀도함수의 x축 투영영역과 일치함에 주목한다. 따라서 체동은 스펙트럼의 비제로 영역과 제로영역(zero area)의 경계를 검출함으로써 추정되며, x 방향의 체동은 역방향으로 스펙트럼을 변위시킴으로써 제거된다. 그 다음으로, y 방향의 체동은 그 체동성분과 실제의 화상성분을 분리할 수 있는 구속조건을 적용함으로써 제거된다. 최종적으로 phantom 화상을 사용한 시뮬레이션을 통해서 본 방법의 유효성을 확인하였으며, 그 결과 제안한 방법이 기존의 방법에 비해 포괄적으로 사용할 수 있음을 알 수 있었다.

  • PDF

Cancellation of MRI Motion Artifact in Image Plane

  • Kim Eung-Kyeu
    • 융합신호처리학회논문지
    • /
    • 제1권1호
    • /
    • pp.49-57
    • /
    • 2000
  • In this study, a new algorithm for canceling a MRI artifact due to the translational motion In the image plane is described. Unlike the conventional iterative phase retrieval algorithm, in which there is no guarantee for the convergence, a direct method for estimating the motion is presented. In previous approaches, the motions in the x(read out) direction and the y(phase encoding) direction were estimated simultaneously. However, the feature of x and y directional motions are different from each other. By analyzing their features, each x and y directional motion is canceled by the different algorithms in two steps. First, it is noticed that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non-zero area of the spectrum just corresponds to the projected area of the density function on the x axis. So the motion is estimated by tracing the edges between non-zero area and zero area of the spectrum, and the x directional motion is canceled by shifting the spectrum in an reverse direction. Next, the y directional motion is canceled by using a new constraint condition, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by using a phantom image with simulated motion.

  • PDF

촬상단면내의 MRI 체동 아티팩트의 제거 (Cancellation of MRI Motion Artifact in Image Plane)

  • 김응규;권영도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.631-634
    • /
    • 1999
  • In this work, a new algorithm for canceling MRI artifact in the image plane is presented. In the conventional approach, the motions in the X(readout) direction and Y(the phase encoding) direction are estimated simultaneously. However, the feature of each X and Y directional motion is different. First, we notice that the X directional motion corresponds to a shift of the X directional spectrum of the MRI signal, and the non zero area of the spectrum just corresponds to X axis projected area of the density function. So the motion is estimated by tracing the edges of the spectrum, and the X directional motion is canceled by shifting the spectrum in inverse direction. Next, the Y directional motion is canceled using a new constraint, with which the motion component and the true image component can be separated. This algorithm is shown to be effective by simulations.

  • PDF

Effects of NEX on SNR and Artifacts in Parallel MR Images Acquired using Reference Scan

  • Heo, Yeong-Cheol;Lee, Hae-Kag;Cho, Jae-Hwan
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.422-427
    • /
    • 2013
  • The aim of this study was to investigate effects of the number of acquisitions (NEX) on signal-to-noise (SNR) and artifacts in SENSE parallel imaging of magnetic resonance imaging (MRI). 3.0T MR System, 8 Channel sensitivity encoding (SENSE) head coils were used along with an in-vivo phantom. Reference sequence of 3D fast field echo (FFE) was consisted of NEX values of 2, 4, 6, 8, 10 and 12. The T2 turbo spin echo (TSE) sequence used for exams achieved SENSE factors of 1.2, 1.5, 1.8, 2.0, 2.2, 2.5, 2.8, 3.0, 3.2, 3.5, 3.8 and 4.0. Exams were conducted five times for each SENSE factor to measure signal intensity of the object, the posterior phase-encode direction and frequency direction. And SNR was calculated using mean values. SENSE artifacts were identified as background signal intensity in the phase-encoded direction using MRIcro. It was found that SNR increased but SENSE artifacts reduced with NEX of 4, 8 and 12 when the NEX increased in reference scan. It is therefore concluded that image quality can be improved with NEX of 4, 8 and 12 for reference scanning.

MRI 촬상단면내의 체동 아티팩트의 제거 (Cancellation of Motion Artifact in MRI Image Plane)

  • 김응규;권영도
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 추계종합학술대회 논문집
    • /
    • pp.1075-1078
    • /
    • 1999
  • In this study, a new algorithm for canceling MRI artifacts through the translational motion of image plane is presented. Bloating is often makes problems in a clinical diagnosis. Assuming that the head moves up and down due to breathing, rigid translational motions in only y(phase encoding axis) direction is treated. First, we notice that the x directional motion corresponds to a shift of the x directional spectrum of the MRI signal, and the non zero area of the spectrum just corresponds to x axis projected area of the density function. So the motion is estimated by tracing the edges of the spectrum, and the x directional motion is canceled by shifting the spectrum in inverse direction. Next, the y directional motion is canceled using a new constraint, with which the motion component and the true image component can be separated. Finally, the effectiveness of this algorithm is shown by using a phantom with simulated motions.

  • PDF

자기공명영상장치(磁氣共鳴映像裝置)에서 움직임허상(虛像)의 위치제어(位置制御)에 관(關)한 연구(硏究) (A Study on Locational Control of Motion Ghost in Magnetic Imaging System)

  • 이후민
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제16권2호
    • /
    • pp.19-26
    • /
    • 1993
  • Magnetic Resonance Image represents three-dimensional diagnostic imaging technique using both nuclear magnetic resonance phenomenon and computer. Compared with computed tomography (CT), MRI have advantages harmless to patient's body, three-dimensional image with high resolution and disadvantages long data acquisition time because of long T1 relaxation time, relatively low signal to noise ratio, high cost of setting, also. As physiologic motion of tissue results in motion ghost in MRI, high 2.0Tesla make improve low signal to noise ratio. This study have aim to improve image quality with controling motion ghost of tissue. Supposing a moving pixel in constant frequency, one pixel make two ghosts which are same size and different anti-phase. So, this study will show adjust parameter on locational control of motion ghost. Author made moving phantom replaced by respiratory movement of human, researched change of motion frequency, FOV by location shift, and them decided optimal FOV (field of view). The results are as follows: 1. The frequency content of the motion determines how far the image always appear in phase-encoding direction, the morphology of the ghost image is characteristic of the direction of the motion and its amplitude. 2. Double FOV of fixed signal object for locational control of motion ghost is recommended. Decreasement of spatial resolution by increasing FOV can compensate on increasing of matrix in spite of scan time increasement.

  • PDF

Intra-Motion Compensation Using CSRS method in MRI

  • Ro, Y.M.;Yi, J.H.;Cho, Z.H.
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.377-382
    • /
    • 1994
  • In the conventional Fourier imaging method in MRI (Magnetic Resonance Imaging), intramotion such as pulsatile flow makes zipper-like artifact along the phase encoding direction. On the other hand, line-integral projection reconstruction (LPR) method has advantages such as imaging of short T2, object and reduction of the flow artifact by elimination of the flow-induced phase fluctuation. The LPR, however, necessarily requires time consuming filtering and back-projection processes, so that the reconstruction takes long time. To overcome the long reconstruction time of the LPR and to obtain the flow artifact reduction effect, we adopted phase corrected concentric square raster sampling (CSRS) method and improved its imaging performance. The CSRS is a fast reconstruction method which has the same properties with the LPR. In this paper, we proposed a new method of flow artifact reduction using the CSRS method. Through computer simulations and experiments, we verified that the proposed method can eliminate phase fluctuations, thereby reducing the flow artifact and re- markably shorten the reconstruction time which required long time in the LPR.

  • PDF

MRI에 있어서 체동 아티팩트의 제거 (Cancellation of Motion Artifact in MRI)

  • 김응규
    • 대한전자공학회논문지SP
    • /
    • 제37권3호
    • /
    • pp.70-78
    • /
    • 2000
  • 본 연구에서는 촬상단면내의 평행이동에 기인한 MRI 아티팩트를 제거하는 새로운 방법을 제안한다 임상 진단에 있어서 종종 문제가 되고 있는 호흡에 따른 두뇌부분의 상하이동을 고려해서 위상 엔코드 축인 y 방향만의 강체의 평행이동을 취급한다 종래의 발견적인 반복위상탐색 처리법과는 달리, MRI 촬상과정과 화장 특성의 해석에 근거한 MRI 신호내의 체동성분과 화상성분을 단순한 대수연산에 의해 분리할 수 있는 새로운 구속조건을 도출한다 MRI 신호에 대해서 x 방향의 1차원 푸리에 변환을 행한 후의 y 방향 스펙트럼 위상값은 화상자신의 성분과 체동성분의 합이 되고 있다 한편 두뇌부위 등의 단층상에 있어서 주위의 피하지방 부분의 밀도는 거의 균일하다고 알려져 있어, 이 부위상에 있는 y 방향의 한 라인의 말도분포는 대칭모양으로 간주할 수 있다 밀도함수가 대칭인 경우 스펙트럼의 위상은 그 위치에 대하여 선형적으로 변화한다 따라서 이 선형함수로부터 벗어난 성분을 체동으로 분리할 수 있다. 이러한 구속조건에 기초를 둔 새로운 아티팩트의 제거방법이 본 연구에서 제안된다 최종적으로 phantom 화상을 사용한 시뮬레이션을 통해 본 방 법의 유효성을 나타낸다.

  • PDF