• Title/Summary/Keyword: physical neutral surface concept

Search Result 10, Processing Time 0.02 seconds

Wave propagation in a FG circular plate via the physical neutral surface concept

  • She, Gui-Lin;Ding, Hao-Xuan;Zhang, Yi-Wen
    • Structural Engineering and Mechanics
    • /
    • v.82 no.2
    • /
    • pp.225-232
    • /
    • 2022
  • In this paper, the physical neutral surface concept is applied to study the wave propagation of functionally graded (FG) circular plate, the wave equation is derived by Hamiltonian variational principle and the first-order shear deformation plate model. Then, we convert the equations to dimensionless equations. The exact solution of wave propagation problem is obtained by Laplace integral transformation, the first order Hankel integral transformation and the zero order Hankel integral transformation. The results obtained by the current model are very close to those obtained in the existing literature, which indicates the correctness and reliability of this study. Moreover, the effects of the functionally graded index parameters and pore volume fraction on the wave propagation are also discussed in detail.

Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept

  • Ahouel, Mama;Houari, Mohammed Sid Ahmed;Bedia, E.A. Adda;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.963-981
    • /
    • 2016
  • A nonlocal trigonometric shear deformation beam theory based on neutral surface position is developed for bending, buckling, and vibration of functionally graded (FG) nanobeams using the nonlocal differential constitutive relations of Eringen. The present model is capable of capturing both small scale effect and transverse shear deformation effects of FG nanobeams, and does not require shear correction factors. The material properties of the FG nanobeam are assumed to vary in the thickness direction. The equations of motion are derived by employing Hamilton's principle, and the physical neutral surface concept. Analytical solutions are presented for a simply supported FG nanobeam, and the obtained results compare well with those predicted by the nonlocal Timoshenko beam theory.

Wave propagation in an FG circular plate in thermal environment

  • Gui-Lin, She;Yin-Ping, Li
    • Geomechanics and Engineering
    • /
    • v.31 no.6
    • /
    • pp.615-622
    • /
    • 2022
  • In this paper, considering the temperature dependence of material physical parameters as well as the effects of thermal effect and shear deformation, we have conducted an in-depth study on the wave propagation of functionally graded (FG) materials circular plate in thermal environment based on the physical neutral surface concept. The dynamic governing equations of functionally graded plates are established, and the dispersion relation of wave propagation is derived. The influence of different temperature fields on the propagation characteristics of flexural waves in FG circular plates is discussed in detail. It can be found that the phase velocity and group velocity of wave propagation in the plate decrease with the increase of temperature.

A refined hyperbolic shear deformation theory for bending of functionally graded beams based on neutral surface position

  • Zouatnia, Nafissa;Hadji, Lazreg;Kassoul, Amar
    • Structural Engineering and Mechanics
    • /
    • v.63 no.5
    • /
    • pp.683-689
    • /
    • 2017
  • In this paper, a hyperbolic shear deformation theory is presented for bending analysis of functionally graded beams. This theory used in displacement field in terms of thickness co-ordinate to represent the shear deformation effects and does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the virtual work principle and the physical neutral surface concept. A simply supported functionally graded beam subjected to uniformly distributed loads and sinusoidal loads are consider for detail numerical study. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

Dynamic behavior of FGM beam using a new first shear deformation theory

  • Hadji, Lazreg;Daouadji, T. Hassaine;Bedia, E.A.
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.451-461
    • /
    • 2016
  • A new first-order shear deformation theory is developed for dynamic behavior of functionally graded beams. The equations governing the axial and transverse deformations of functionally graded plates are derived based on the present first-order shear deformation plate theory and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface based formulation, and consequently, the governing equations and boundary conditions of functionally graded beams based on neutral surface have the simple forms as those of isotropic plates. The accuracy of the present solutions is verified by comparing the obtained results with the existing solutions.

Analyse of the behavior of functionally graded beams based on neutral surface position

  • Hadji, Lazreg;Bedia, El Abbes Adda
    • Structural Engineering and Mechanics
    • /
    • v.55 no.4
    • /
    • pp.703-717
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

A simple shear deformation theory based on neutral surface position for functionally graded plates resting on Pasternak elastic foundations

  • Meksi, Abdeljalil;Benyoucef, Samir;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1215-1240
    • /
    • 2015
  • In this work, a novel simple first-order shear deformation plate theory based on neutral surface position is developed for bending and free vibration analysis of functionally graded plates and supported by either Winkler or Pasternak elastic foundations. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Numerical results of present theory are compared with results of the traditional first-order and the other higher-order theories reported in the literature. It can be concluded that the proposed theory is accurate and simple in solving the static bending and free vibration behaviors of functionally graded plates.

A n-order refined theory for bending and free vibration of functionally graded beams

  • Hadji, Lazreg;Daouadji, T. Hassaine;Tounsi, A.;Bedia, E.A.
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.923-936
    • /
    • 2015
  • In this paper, a simple n-order refined theory based on neutral surface position is developed for bending and frees vibration analyses of functionally graded beams. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.

An efficient shear deformation theory for wave propagation of functionally graded material plates

  • Boukhari, Ahmed;Atmane, Hassen Ait;Tounsi, Abdelouahed;Adda Bedia, E.A.;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.837-859
    • /
    • 2016
  • An efficient shear deformation theory is developed for wave propagation analysis of an infinite functionally graded plate in the presence of thermal environments. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The thermal effects and temperature-dependent material properties are both taken into account. The temperature field is assumed to be a uniform distribution over the plate surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of the wave propagation in the functionally graded plate are derived by employing the Hamilton's principle and the physical neutral surface concept. There is no stretching.bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations and boundary conditions of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. The analytic dispersion relation of the functionally graded plate is obtained by solving an eigenvalue problem. The effects of the volume fraction distributions and temperature on wave propagation of functionally graded plate are discussed in detail. It can be concluded that the present theory is not only accurate but also simple in predicting the wave propagation characteristics in the functionally graded plate. The results carried out can be used in the ultrasonic inspection techniques and structural health monitoring.

A n-order four variable refined theory for bending and free vibration of functionally graded plates

  • Djedid, I. Klouche;Benachour, Abdelkader;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Ameur, Mohammed
    • Steel and Composite Structures
    • /
    • v.17 no.1
    • /
    • pp.21-46
    • /
    • 2014
  • This paper presents a simple n-order four variable refined theory for the bending and vibration analyses of functionally graded plates. By dividing the transverse displacement into bending and shear parts, the number of unknowns and governing equations of the present theory is reduced, and hence, makes it simple to use. The present theory is variationally consistent, uses the n-order polynomial term to represent the displacement field, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The governing equations are derived by employing the Hamilton's principle and the physical neutral surface concept. The accuracy of the present solutions is verified by comparing the obtained results with available published ones.