• Title/Summary/Keyword: plastic work

Search Result 721, Processing Time 0.022 seconds

Effect of the yield criterion on the strain rate and plastic work rate intensity factors in axisymmetric flow

  • Lyamina, Elena A.;Nguyen, Thanh
    • Structural Engineering and Mechanics
    • /
    • v.58 no.4
    • /
    • pp.719-729
    • /
    • 2016
  • The main objective of the present paper is to study the effect of the yield criterion on the magnitude of the strain rate and plastic work rate intensity factors in axisymmetric flow of isotropic incompressible rigid perfectly plastic material by means of a problem permitting a closed-form solution. The boundary value problem consisting of the axisymmetric deformation of a plastic tube is solved. The outer surface of the tube contracts. The radius of the inner surface does not change. The material of the tube obeys quite a general yield criterion and its associated flow rule. The maximum friction law is assumed at the inner surface of the tube. Therefore, the velocity field is singular near this surface. In particular, the strain rate and plastic work rate intensity factors are derived from the solution. It is shown that the strain rate intensity factor does not depend on the yield criterion but the plastic work rate intensity factor does.

A Study on Development of Work Wear for the Plastic House Workers (비닐 하우스용 작업복 개발에 관한 연구)

  • Myung, Ji Young;Shim, Huen Sup;Choi, Jeong Wha
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.17 no.1
    • /
    • pp.19-35
    • /
    • 1993
  • This study was designed to devise work wear for plastic house worker. It was carried out (1) research on the clothing actual condition through interviewings with plastic house worker and observations, (2) thermal manikin test to measure thermal resistance of experimental clothes and (3) clothing comparing test in the laboratory and in the plastic house. In the laboratory experiment, it was choosen general type (A) and new devised types (B, C) made of microporous fabric for experimental clothes. Experimental clothes were made of 6 combinations including 3 type work wears (A, B, C) and 2 type underwears (1, 2). In the plastic house experiment, it was choosen general types of A (without rest place) and B (with rest place), and devised type C (with rest place), which was appeared good effect in the laboratory experiment. The results were as followings. 1. Work environment of the plastic house in summer and winter was very different from the outer environment. Work motion in the plastic house was burden to the plastic house workers. 2. Plastic house workers had on the general type's work wear. 3. As a result of thermal manikin test, thermal resistance was appeared B1>B2>C2>C1>A1>A2 in orders. 4. In the laboratory experiment, experimental clothes A was appeared smaller burden than B, C. Effect of mesh underwear was not appeared in this study condition. In subjective sensation, experimental clothes C was lower vote than A. Therefore experimental clothes C was superior to A in subjective wearing sensation. 5. In the plastic house experiment, the experimental conditions with rest place were appeared smaller burden than without rest place. General type B was appeared more positive physiological reactions than devised type C but significances between two types was not appeared.

  • PDF

Study on Improvement of Working Environment in Plastic House to Prevent Plastic House Syndrome (하우스증 예방을 위한 비닐하우스내 작업환경 개선에 관한 연구)

  • 김명주;최정화
    • Korean Journal of Rural Living Science
    • /
    • v.5 no.2
    • /
    • pp.107-115
    • /
    • 1994
  • This study was conducted to provide a counterplan for preventing so celled “plastic house syndrome” revealed among farmers spending much time in the plastic houses. For this, working environment inside a plastic house was observed. Then, experiments were carried out mostly in a climatic chamber with three kinds of working posture on uneven($D_1-F_1$) or even($D_2-F_2$) ground surface. Tested work loads with three kinds of working posture were : moving in a sitting posture with attaching breast to legs and waving arms ($A_1$), moving in a bending posture with waving arms ($B_1$), and moving a 6kg weighting luggage in a standing posture ($C_1$) Physiological responses in the workers to three different work loads were observed in a climatic chamber, with or without using some instruments, to evaluate work efficiencies. The results obtained are summerized as follows. 1. $C_1$ was the hardest work and $B_1$ was harder than $A_1$ on the even ground. 2. Worker's physiological fatigue and physical loads remarkably decreased when using the instruments such as a chair and a cart with some rollers on the even ground. 3. Working with pushing a cart($F_1$) was the hardest work, and standing($D_1$) was harder than walking($E_1$) on the uneven ground. 4. Worker's physiological fatigues and physical loads remarkably decreased on the even ground. 5. Similar results were obtained when the same experiment was carried out in a plastic house.

  • PDF

The Plastic -film -covered Hill Planter

  • Jun, Zhang-Xue;YangYin
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.1041-1044
    • /
    • 1996
  • The plastic-film-covered hill planter is a new-type seeding machine, including tow types which are mounted by 11kw and 40 kw tractors. It is made up of fertilizing , plastic-film covering perforating film and hole seeding, soil sealing apparatus, and can work at 5-7kw/h. The plastic-film covering and seeding of cotton, corn and soybean can all use this machine. The plastic-film-covered hill planter is mainly composed of plastic film covering unit, drum-type hill-drop unit and furrow coverer, some other types are also equipped with fertilizer drill unit. It can do combined work of covering plastic film , sowing , plastic film perforating , soil covering at one time, and it is suitable to the covering plastic film as well as planting of the grandulated crops, such as cotton , corn, soybean and so on.

  • PDF

Open reduction and internal fixation of metacarpal fractures using a thermoplastic splint as a surgical instrument

  • Papavasiliou, Theodora;Park, Paul Dain;Tejero, Ricardo;Allain, Niklaas;Uppal, Lauren
    • Archives of Plastic Surgery
    • /
    • v.48 no.4
    • /
    • pp.384-388
    • /
    • 2021
  • Adequate positioning of the hand is a critical step in hand fracture operative repair that can impact both the clinical outcome and the efficiency of the operation. In this paper, we introduce the use of a thermoplastic splint with an added thumb stabilizing component as a means to increase the surgeon's autonomy and to streamline the patient care pathway. The thermoplastic splint is custom fabricated preoperatively by the specialist hand therapist. The splint is used prior, during, and post operation with minimal modification. The thumb component assists maintaining the forearm in a stable pronated position whilst drilling and affixing metal work. This is demonstrated in the video of removal of metal work and open reduction and internal fixation of a metacarpal fracture.

The Establishment of Work Conditions in Plastic Extrusion Process by using Multiple Linear Regression Analysis (중회귀분석을 이용한 플라스틱 압출공정의 작업조건 설정 방법)

  • 김태호;김석중;강경식
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.34
    • /
    • pp.35-42
    • /
    • 1995
  • In the plastic extrusion process, product quality is influenced by work condition for temperature of cylinders and dies. The work conditions are various, so it is difficult to standardization of the work conditions. Therefore, the work conditions are depended on the workers of experience and skill. In the plastic extrusion process, it has five control heating points on the cylinder and three control heating points on the die. In addition, there is one control point on the extrusion process. It is extrusion speed. In this case, we don't know how these affect product quality. We structure the multiple linear regression equation with the temperature of cylinders and dies as independent variables and the product weight as dependent variable. We solve this equation using statistic computer package named Juse-Qcas.

  • PDF

A Study on Surface Charge Characteristics on Various Plastic Materials for Ttiboelectrostatic Separation of Plastic Wastes (폐플라스틱 정전분리를 위한 하전특성에 관한 연구)

  • 김도균;조희찬;전호석
    • Resources Recycling
    • /
    • v.11 no.3
    • /
    • pp.37-45
    • /
    • 2002
  • Triboelectrostatic Separation procese is a technology that different particles charged after contact and rubbing different materials are separated in an electric field. At this time, charged polarity of different materials depends on their own work function. Therefore this study discovers work functions of various plastics and determines charging characteristics for the specific optimum operation condition. The experiment is conducted with two sample sets composed of various different plastics. Each sample is charged by contact and rubbing different materials. Surface charge of charged particles is measured by Faraday Cage. The specific work function of an each plastic is driven by measured charging amount and charged particles are separated in a certain electric field ($\pm$20 kV). At last, the relationship between charging amount and separation efficiency is induced by the separation experiment.

Design of steel moment frames considering progressive collapse

  • Kim, Jinkoo;Park, Junhee
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.85-98
    • /
    • 2008
  • In this study the progressive collapse potential of three- and nine-story special steel moment frames designed in accordance with current design code was evaluated by nonlinear static and dynamic analyses. It was observed that the model structures had high potential for progressive collapse when a first story column was suddenly removed. Then the size of beams required to satisfy the failure criteria for progressive collapse was obtained by the virtual work method; i.e., using the equilibrium of the external work done by gravity load due to loss of a column and the internal work done by plastic rotation of beams. According to the nonlinear dynamic analysis results, the model structures designed only for normal load turned out to have strong potential for progressive collapse whereas the structures designed by plastic design concept for progressive collapse satisfied the failure criterion recommended by the GSA guideline.

Energy-based design base shear for RC frames considering global failure mechanism and reduced hysteretic behavior

  • Merter, Onur;Ucar, Taner
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.23-35
    • /
    • 2017
  • A nonlinear static procedure considering work-energy principle and global failure mechanism to estimate base shears of reinforced concrete (RC) frame-type structures is presented. The relative energy equation comprising of elastic vibrational energy, plastic strain energy and seismic input energy is obtained. The input energy is modified with a factor depending on damping ratio and ductility, and the energy that contributes to damage is obtained. The plastic energy is decreased with a factor to consider the reduced hysteretic behavior of RC members. Given the pre-selected failure mechanism, the modified energy balance equality is written using various approximations for modification factors of input energy and plastic energy in scientific literature. External work done by the design lateral forces distributed to story levels in accordance with Turkish Seismic Design Code is calculated considering the target plastic drift. Equating the plastic energy obtained from energy balance to external work done by the equivalent inertia forces considering, a total of 16 energy-based base shears for each frame are derived considering different combinations of modification factors. Ductility related parameters of modification factors are determined from pushover analysis. Relative input energy of multi degree of freedom (MDOF) system is approximated by using the modal-energy-decomposition approach. Energy-based design base shears are compared with those obtained from nonlinear time history (NLTH) analysis using recorded accelerograms. It is found that some of the energy-based base shears are in reasonable agreement with the mean base shear obtained from NLTH analysis.

Two Back Stress Hardening Models in Rate Independent Rigid Plasticity (변형률 독립 강소성 구성 방정식에서의 이중 후방 응력 경화 모델)

  • Yun S. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.327-337
    • /
    • 2005
  • In the present work, the two back stress kinematic hardening models are proposed by combining Armstrong-Frederick, Phillips and Ziegler's hardening rules. Simple combination of hardening rules using simple rule of mixtures results in various evolutions of the kinematic hardening parameter. Using the combined hardening models the ultimate back stress fur the present models is also derived. The stress rate is co-rotated with respect to the spin of substructure due to the assumption of kinematic hardening rule in finite deformation regime. The work piece under consideration is assumed to consist of the elastic and the rigid plastic deformation zone. Then, the J2 deformation theory is facilitated to characterize the plastic deformation behavior under various loading conditions. The plastic deformation localization behaviors strongly depend on the constitutive description namely back stress evolution and its hardening parameters. Then, the analysis for Swift's effects under the fixed boundaries in axial directions is carried out using simple shear deformation.