• Title/Summary/Keyword: position domain performance

Search Result 88, Processing Time 0.03 seconds

A Study of SBAS Position Domain Analysis Method: WAAS and EGNOS Performance Evaluation

  • Kim, Dong-Uk;Han, Deok-Hwa;Kim, Jung-Beom;Kim, Hwi-Gyeom;Kee, Chang-Don;Choi, Kwang-Sik;Choi, Heon-Ho;Lee, Eun-Sung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.4
    • /
    • pp.203-211
    • /
    • 2016
  • A Satellite Based Augmentation System (SBAS) is a system that provides positioning information with high and accurate reliability to users who require ensuring high safety such as airplane taking off and landing. A continuous performance evaluation on navigation safety facilities shall be performed to determine whether developed systems meet the required performance before and after the operation. In this paper, SBAS position domain analysis is discussed in relation to analysis items for performance evaluation. The performance evaluation on the SBAS in the position domain shall conduct analysis on accuracy, integrity, continuity, and availability, which are items in the required navigation performance (RNP). In the paper, position domain analysis was conducted with regard to the Wide Area Augmentation System (WAAS) in the USA and the European Geostationary Navigation Overlay Service (EGNOS), which were developed already and now under operation. The analysis result showed that each of the systems satisfied the APV-I performance requirements recommended by the International Civil Aviation Organization (ICAO) with regard to daily data. It is necessary to verify using long-term data, whether the performance requirements in the RNP items are satisfied for system certification.

SELECTION OF THE OPTIMAL POSITION OF THE FLAP FOR THE IMPROVEMENT OF AERODYNAMIC PERFORMANCE (공기역학적 성능 향상을 위한 플랩의 최적 위치 선정)

  • Kang, H.M.;Park, Y.M.;Kim, C.W.;Lee, C.H.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.41-46
    • /
    • 2013
  • The selection of the optimal position of the flap was performed in order to improve the aerodynamic performance during the take-off and landing processes of aircraft. For this, the existing airfoils of the main wing and flap are selected as the baseline model and the lift coefficients (cl) according to angle of attacks (AOA) were calculated with the change of the position of flap airfoil. The objective function was defined as the consideration of the maximum cl, lift to drag ratio and cl at certain AOA. Then, at 121 experimental points within $20mm{\times}20mm$ domain, two dimensional flow simulations with Spalart-Allmaras turbulence model were performed concerning the AOA from 0 to 15 degree. If the optimal position was located at the domain boundary, the domain moved to the optimal position. These processes were iterated until the position was included in the inside of the domain. From these processes, the flow separation at low AOA was removed and cl increased linearly comparing with that of the baseline model.

The Integrated eLoran/GPS Navigation Algorithm for Reduced Calculational Complexity and High Accuracy (계산량과 정확도를 동시에 만족하는 eLoran/GPS 통합 항법 알고리즘)

  • Song, Se-Phil;Shin, Mi-Young;Son, Seok-Bo;Kim, Young-Baek;Lee, Sang-Jeong;Park, Chan-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.612-619
    • /
    • 2011
  • Satellite navigation system such as GPS is becoming more important infrastructure for positioning, navigation and timing. But satellite navigation system is vulnerable to interferences because of the low received power, complementary navigation system such as eLoran is needed. In order to develop eLoran/GPS navigation system, integrated eLoran/GPS navigation algorithm is necessary. In this paper, new integrated eLoran/GPS navigation algorithm is proposed. It combines the position domain integration and the range domain integration to get accurate position with less computational burden. Also an eLoran/GPS evaluation platform is designed and performance evaluation of the proposed algorithm using the evaluation platform is given. The proposed algorithm gives an accuracy of the range domain integration with a computational load of the position domain integration.

Performance Evaluation of Double-Differencing Position-Domain Hatch Filter By a Landing Experiment (착륙 실험에 의한 이중차분 위치영역 Hatch 필터의 성능 분석)

  • Kim, Hee-Sung;Joo, Jung-Min;Lee, Hyung-Keun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.1
    • /
    • pp.19-26
    • /
    • 2010
  • To expand the application area of global navigation satellite systems, precision landing is one of the most critical area to be solved. For the development and validation of the precision landing system, many aspects need to be analyzed including the system architecture, signal characteristics, atmospheric delay, communication delay, accuracy, integrity, and availability. Among them, the signal characteristics analysis requires the processing of measurements collected by real-flight experiments. This paper presents the processing results of the real measurements collected by a flight and landing experiment. To process and analyze the data, double differencing position-domain hatch filter is utilized. Accuracy of the proposed filter is evaluated utilizing reference trajectory generated by commercial software. Finally, by comparing with conventional range domain characteristics of position domain filter is analyzed.

Analyzing Position-Domain Hatch Filter for Real-Time Kinematic Differential GNSS (실시간 동적 차분 위성항법을 위한 위치영역 Hatch 필터의 성능 해석)

  • Lee, Hyeong-Geun;Ji, Gyu-In;Rizos, C.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.48-55
    • /
    • 2006
  • Performance characteristics of the position-domain Hatch filter is analyzed for differential global navigation satellite systems. It is shown that the position-domain Hatch filter generates white measurement residual sequences, which is beneficial property for fault detection. It is also shown that the position-domain Hatch filter yields more accurate a priori state estimate than the position-domain Kalman-type filter. Thus, it can be concluded that the position-domain Hatch filter is beneficial in wide application areas where fault-tolerance and accuracy are required at the same time.

GNSS Precise Positioning Design for Intelligent Transportation System (지능형 교통시스템에 적합한 위성항법 기반의 정밀측위 구조 설계)

  • Lee, Byung-Hyun;Im, Sung-Hyuck;Heo, Moon-Beom;Jee, Gyu-In
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.11
    • /
    • pp.1034-1039
    • /
    • 2012
  • In this paper, a structure of precise positioning based on satellite navigation system is proposed. The proposed system is consisted with three parts, range domain filter, navigation filter and position domain filter. The range domain filter generates carrier phase-smoothed-Doppler and Doppler-smoothed-code measurements. And the navigation filter calculates position and velocity using double-differenced code/carrier phase/Doppler measurements. Finally, position domain filter smooth position error, and it means enhancement of positioning performance. The proposed positioning method is evaluated by trajectory analysis using precise map date. As a result, the position error occurred by multipath or cycle slip was reduced and the calculated trajectory was in true lane.

A Methodological Approach on the Evaluation of Patient Satisfaction: Focused on the Importance Performance Analysis(IPA) (환자만족도 평가에 대한 방법론적 접근: IPA기법을 중심으로)

  • Park, Jae-San
    • Health Policy and Management
    • /
    • v.18 no.3
    • /
    • pp.1-17
    • /
    • 2008
  • The measurement and management of patient satisfaction has become one of the key issues in the last two decades. Hospitals must thoroughly understand the needs of their customers and design products and health services that meet and exceed their expectations. The importance-performance analysis(IPA) is a widely used analytical technique that yields strategies for managing customer satisfaction in a variety of applications. IP A is a two-dimensional grid based on customer-perceived importance of quality attributes and attribute performance. Depending on the interplay of these two dimensions, four strategies can be derived. The aim of this study is to develop the management strategies for improving patient satisfaction in university hospitals using the I-P analysis. The attributes on inpatient service quality in 4 university hospitals was investigated using the Martilla and James(l977)' s a mean adjusted I-P grid where the axes of the grid cross at the average rating point of all items. The patient satisfaction questionnaires were completed by 600 hospital inpatients. The main statistical methods are path analysis and IPA with SPSS 12.0 and AMOS 4.0 statistical softwares. The two attributes, physician and medical service, administrative staff kindness attributes position in first quadrant(Keep Up the Good domain). The nurse and nursing service attributes position in second quadrant(Possible Overkill domain). The two attributes, convenience of check-in service, facilities and physical environment position in third quadrant(Low Priority domain). Finally the quality of inpatient service(food etc.) attributes position in fourth quadrant(Concentrate Here domain). These findings show various implications on the development of strategies in university hospitals in the future. It was determined that quality of inpatient service(food etc.) need to concentrate more on investments. These investments include a taste, price, proper provision of food service and quick response of pain management. A low priority was given to investment in streamlining the check-in process of inpatient and hospital facilities and physical environment in the long run.

A Feasible Approach for the Unified PID Position Controller Including Zero-Phase Error Tracking Performance for Direct Drive Rotation Motor

  • Kim, Joohn-Sheok
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.74-84
    • /
    • 2009
  • The design and implementation of a high performance PID (Proportional Integral & Differential) style controller with zero-phase error tracking property is considered in this article. Unlike a ball screw driven system, the controller in a direct drive system should provide a high level of tracking performance while avoiding the problems due to the absence of the gear system. The stiff mechanical element in a direct drive system allows high precise positioning capability, but relatively high tracking ability with minimal position error is required. In this work, a feasible position controller named 'Unified PID controller' is presented. It will be shown that the function of the closed position loop can be designed into unity gain system in continuous time domain to provide minimal position error. The focus of this work is in two areas. First, easy gain tunable PID position controller without speed control loop is designed in order to construct feasible high performance drive system. Second, a simple but powerful zero phase error tracking strategy using the pre-designed function of the main control loop is presented for minimal tracking error in all operating conditions. Experimental results with a s-curve based position pattern commonly used in industrial field demonstrate the feasibility and effective performance of the approach.

DGNSS-CP Performance Comparison of Each Observation Matrix Calculation Method (관측 행렬 산출 기법 별 DGNSS-CP 성능 비교)

  • Shin, Dong-hyun;Lim, Cheol-soon;Seok, Hyo-jeong;Yoon, Dong-hwan;Park, Byungwoon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.5
    • /
    • pp.433-439
    • /
    • 2016
  • Several low-cost global navigation satellite system (GNSS) receivers do not support general range-domain correction, and DGNSS-CP (differential GNSS) method had been suggested to solve this problem. It improves its position accuracy by projecting range-domain corrections to the position-domain and then differentiating the stand-alone position by the projected correction. To project the range-domain correction, line-of-sight vectors from the receiver to each satellite should be calculated. The line-of-sight vectors can be obtained from GNSS broadcast ephemeris data or satellite direction information, and this paper shows positioning performance for the two methods. Stand-alone positioning result provided from Septentrio PolaRx4 Pro receiver was used to show the difference. The satellite direction information can reduce the computing load for the DGNSS-CP by 1/15, even though its root mean square(RMS) of position error is bigger than that of ephemeris data by 0.1m.

Design of Kinematic Position-Domain DGNSS Filters (차분 위성 항법을 위한 위치영역 필터의 설계)

  • Lee, Hyung Keun;Jee, Gyu-In;Rizos, Chris
    • Journal of Advanced Navigation Technology
    • /
    • v.8 no.1
    • /
    • pp.26-37
    • /
    • 2004
  • Consistent and realistic error covariance information is important for position estimation, error analysis, fault detection, and integer ambiguity resolution for differential GNSS. In designing a position domain carrier-smoothed-code filter where incremental carrier phases are used for time-propagation, formulation of consistent error covariance information is not easy due to being bounded and temporal correlation of propagation noises. To provide consistent and correct error covariance information, this paper proposes two recursive filter algorithms based on carrier-smoothed-code techniques: (a) the stepwise optimal position projection filter and (b) the stepwise unbiased position projection filter. A Monte-Carlo simulation result shows that the proposed filter algorithms actually generate consistent error covariance information and the neglection of carrier phase noise induces optimistic error covariance information. It is also shown that the stepwise unbiased position projection filter is attractive since its performance is good and its computational burden is moderate.

  • PDF