• 제목/요약/키워드: positioning accuracy

검색결과 1,403건 처리시간 0.029초

칼만필터를 적용한 RFID-기반 위치결정 시스템의 정확도 분석 (The Accuracy analysis of a RFID-based Positioning System with Kalman-filter)

  • 허준;김정환;손홍규;윤공현
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2007년도 춘계학술발표회 논문집
    • /
    • pp.447-450
    • /
    • 2007
  • Positioning technology for moving object is an important and essential component of ubiquitous. Also RFID(Radio Frequency IDentification) is a core technology of ubiquitous wireless communication. In this study we adapted kalman-filter theory to RFID-based Positioning System in order to trace a time-variant moving object and verify the positioning accuracy using RMSE (Roong technology for moving object is an important and essential component of ubiquitous Mean Square Error). The purpose of this study is to verify an effect of kalman-filter on the positioning accuracy and to analyze what does each design factor have an effect on the positioning accuracy by means of simulations and to suggest a standard of optimal design factor of a RFID-based Positioning System. From the results of simulations, Kalman-filer improved the positioning accuracy remarkably; the detection range of RFID tag is not a determining factor. The smaller standard deviation of detection range improves the positioning accuracy. However it accompanies a smaller fluctuation of the positioning accuracy. The larger detection rate of RFID tag yields the smaller fluctuation in the positioning accuracy and has more stable system and improves the positioning accuracy;

  • PDF

기동화력장비 관성항법장치의 효과적인 위치정확도 시험방법 개발 (Development of Effective Test Method for Positioning Accuracy of Armed Vehicle Inertial Navigation System)

  • 김성훈;배인화;김상부
    • 품질경영학회지
    • /
    • 제51권4호
    • /
    • pp.619-632
    • /
    • 2023
  • Purpose: The main function of INS (Inertial Navigation System) is to measure the position of an armed vehicle and its performance is confirmed through the positioning accuracy test of Korean Defense Standards (KDS). The current standards, however, do not provide clear test methods and the conditions for performing positioning accuracy tests. Accordingly, the purpose of this study is to develop a new method for positioning accuracy test which would be effective. Methods: In this study, a new INS positioning accuracy test method is suggested based on the analysis of test data collected through a statistical experiment known as central composite design. For the positioning accuracy experiment of K105A1, a self-propelled artillery, two factors of driving velocity and driving distance are considered. Results: Based on the analysis of experimental data, a regression model for the positioning error is fitted and the positioning accuracy test of INS is so developed to maximize the positioning error. The standard proximity rate is used as an additional test criterion to evaluate the performance level of INS. Conclusion: The proposed new positioning accuracy test for INS has the advantage of finding the nonconforming items effectively. It is also expected to be utilized for the other similar INS positioning accuracy tests.

Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements

  • Kang, Min-Wook;Won, Jihye;Kim, Mi-So;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제5권2호
    • /
    • pp.59-66
    • /
    • 2016
  • The International GNSS Service (IGS) provides the IGS-Real Time Service (IGS-RTS) corrections that can be used in stand-alone positioning in real time. In this study, the positioning accuracy before and after the application of the corrections to broadcast ephemeris by applying the IGS-RTS corrections at code pseudo-range based stand-alone positioning was compared with positioning result using precise ephemeris. The analysis result on IGS-RTS corrections showed that orbit error and clock error were 0.05 m and 0.5 ns compared to precise ephemeris and accuracy improved by about 8.5% compared to the broadcast ephemeris-applied result when the IGS-RTS was applied to positioning. Furthermore, regionally dispersed five observatories were selected to analyze the effect of external environments on positioning accuracy and positioning errors according to location and time were compared as well as the number of visible satellites and position dilution of precision by observatory were analyzed to verify a correlation with positioning error.

Analysis of Multi-Differential GNSS Positioning Accuracy in Various Signal Reception Environments

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권1호
    • /
    • pp.15-24
    • /
    • 2018
  • This study analyzed positioning accuracy of the multi-differential global navigation satellite system (DGNSS) algorithm that integrated GPS, GLONASS, and BDS. Prior to the analysis, four sites of which satellite observation environment was different were selected, and satellite observation environments for each site were analyzed. The analysis results of the algorithm performance at each of the survey points showed that high positioning performance was obtained by using DGPS only without integration of satellite navigation systems in the open sky environment but the positioning performance of multi-DGNSS became higher as the satellite observation environments degraded. The comparison results of improved positioning performance of the multi-DGNSS at the poor reception environment compared to differential global positioning system (DGPS) positioning results showed that horizontal accuracy was improved by 78% and vertical accuracy was improved by 65% approximately.

NC선반의 직선 사이클 평면 위치결정 정도 측정에 관한 연구 (A Study on Measurement of Linear Cycle Plane Positioning Accuracy of NC Lathe)

  • 김영석;송인석;정정표;한지희;윤원주
    • 한국공작기계학회논문집
    • /
    • 제12권2호
    • /
    • pp.53-58
    • /
    • 2003
  • It is very important to measure linear cycle plane positioning accuracy of NC lathe as it effects all other parts of machines machined by them in industries. If the plane positioning accuracy of NC lathe is bad, the dimension accuracy and the change-ability of works will be bad in the assembly of machine parts. In this paper, computer software systems are organized to measure linear cycle plane positioning displacement of ATC(Automatic tool changer) on zx plane of NC lathe using two linear scales. And each sets of error data obtained from the test is descriptions to plots and the results of linear cycle plane positioning errors are expressed as nutriments by computer treatment.

초정밀위치결정을 위한 델타스테이지의 최적 설계 및 컴퓨터 시뮬레이션에 관한 연구 (A Study on the Optimal Structural Design and Computer Simulation of Delta Stage for ultra Precision Positioning)

  • 김재열;김영석;송찬일;곽이구;한재호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.221-225
    • /
    • 2001
  • Recently, high accuracy and high precision are required in various industrial fields that are composed of semiconductor manufacturing apparatus and ultra precision positioning apparatus and information system and so on. The positioning technology is a very important one among them. This technology has been rapidly developed, its field needs for positioning accuracy to high as submicron. It is expected that accuracy with 10 nm in precision working and accuracy with 1 nm in ultra precision working are reached at the beginning of 2000s. Recently, to accomplish this positioning technology, many researches are concerned about it and make efforts it. This paper contain design technology of ultra precision 2-axis(X-Y Delta) stage for materialize to positioning accuracy with submicron, where, Delta stage is design as optimum against load and disturbance. And computer simulation is performed for stability and dynamic characteristic of Delta stage.

  • PDF

Establishing Required LOD and Positioning Accuracy for Indoor Spatial Information Applications in Public Administrative Works

  • Park, Junho;Lee, Jiyeong
    • 한국측량학회지
    • /
    • 제35권2호
    • /
    • pp.103-112
    • /
    • 2017
  • Due to the large size and high complexity of modern buildings, the interest and the studies about indoor spatial information are increasing. Previous studies related to indoor spatial information were mostly about relevant technologies, and the application of indoor spatial information has been less studied. In the present study, the public administrative work areas where indoor spatial information may be applied were identified by using a modified delphi technique. And the indoor LOD (Level of Detail) and indoor positioning accuracy for indoor spatial information applications considering user requirements was established as standards for efficiently establishing and providing services. The required LOD and positioning accuracy for services was established by reestablishing indoor LOD and positioning accuracy and classifying services with reference to those. The indoor LOD was reestablished from LOD 0 to 4 by focusing on service utilization and general recognition, and the positioning accuracy was reestablished in three levels by considering the accuracy of the present positioning technology and service utilization status.

퍼지 추론 시스템을 이용한 아날로그형 자기위치 장치의 위치 정밀도 향상 (Positioning Accuracy Improvement of Analog-type Magnetic Positioning System using Fuzzy Inference System)

  • 김정민;정경훈;정은국;조현학;김성신
    • 한국지능시스템학회논문지
    • /
    • 제22권3호
    • /
    • pp.367-372
    • /
    • 2012
  • 본 논문은 아날로그형 자기위치 장치(magnetic positioning system)의 개발과 퍼지 추론 시스템(FIS: fuzzy inference system)을 통한 정밀도 향상에 관한 것이다. 자기위치 장치는 무인운반차(AGV: automatic guided vehicle)의 자기-자이로 유도장치(magnet-gyro guidance system)에 사용되는 장치로, 바닥에 매설된 자석의 위치를 계측하는 장치이다. 기존의 판매되고 있는 자기-자이로 유도 장치는 외국에서 독점 판매되고 있어, 국내에서는 가격이 매우 비싸다. 또한, 자기위치 장치에 디지털 타입의 단극성 홀센서를 이용하기 때문에 위치측정 정밀도가 낮다. 이에, 본 논문에서는 자기위치 장치를 직접 개발하였고 퍼지 추론 시스템을 통해 자기위치 장치의 정밀도 향상시켰다. 실험은 직접 개발한 아날로그형 자기위치 장치를 이용하였으며, 기존의 위치측정 방법과 제안된 방법의 성능을 비교하였다. 실험 결과, 제안된 방법이 자기위치 장치의 정밀도를 향상시킴을 확인하였다.

Surface Centroid TOA Location Algorithm for VLC System

  • Zhang, Yuexia;Chen, Hang;Chen, Shuang;Jin, Jiacheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권1호
    • /
    • pp.277-290
    • /
    • 2019
  • The demand for indoor positioning is increasing day by day. However, the widely used positioning methods today cannot satisfy the requirements of the indoor environment in terms of the positioning accuracy and deployment cost. In the existing research domain, the localization algorithm based on three-dimensional space is less accurate, and its robustness is not high. Visible light communication technology (VLC) combines lighting and positioning to reduce the cost of equipment deployment and improve the positioning accuracy. Further, it has become a popular research topic for telecommunication and positioning in the indoor environment. This paper proposes a surface centroid TOA localization algorithm based on the VLC system. The algorithm uses the multiple solutions estimated by the trilateration method to form the intersecting planes of the spheres. Then, it centers the centroid of the surface area as the position of the unknown node. Simulation results show that compared with the traditional TOA positioning algorithm, the average positioning error of the surface centroid TOA algorithm is reduced by 0.3243 cm and the positioning accuracy is improved by 45%. Therefore, the proposed algorithm has better positioning accuracy than the traditional TOA positioning algorithm, and has certain application value.

TOA Based Indoor Positioning Algorithm in NLOS Environments

  • Lim, Jaewook;Lee, Chul-Soo;Seol, Dong-Min;Jung, Sunghun;Lee, Sangbeom
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제10권2호
    • /
    • pp.121-130
    • /
    • 2021
  • In this paper, we propose a method to improve the positioning accuracy of TOA based indoor positioning system in NLOS environments. TOA based indoor positioning systems have been studied mostly considering LOS environments. However, it is almost impossible to maintain the LOS environments due to obstacles such as people, furniture, walls, and so on. The proposed method in this study compensates the range error caused by the NLOS environments. We confirmed that positioning accuracy of a proposed method is improved than conventional algorithms through simulation and field test.