• Title/Summary/Keyword: post CMP cleaning

Search Result 35, Processing Time 0.023 seconds

Effect of Brush Treatment and Brush Contact Sequence on Cross Contaminated Defects during CMP in-situ Cleaning

  • Kim, Hong Jin
    • Tribology and Lubricants
    • /
    • v.31 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Chemical mechanical polishing (CMP) is one of the most important processes for enabling sub-14 nm semiconductor manufacturing. Moreover, post-CMP defect control is a key process parameter for the purpose of yield enhancement and device reliability. Due to the complexity of device with sub-14 nm node structure, CMP-induced defects need to be fixed in the CMP in-situ cleaning module instead of during post ex-situ wet cleaning. Therefore, post-CMP in-situ cleaning optimization and cleaning efficiency improvement play a pivotal role in post-CMP defect control. CMP in-situ cleaning module normally consists of megasonic and brush scrubber processes. And there has been an increasing effort for the optimization of cleaning chemistry and brush scrubber cleaning in the CMP cleaning module. Although there have been many studies conducted on improving particle removal efficiency by brush cleaning, these studies do not consider the effects of brush contamination. Depending on the process condition and brush condition, brush cross contamination effects significantly influence post-CMP cleaning defects. This study investigates brush cross contamination effects in the CMP in-situ cleaning module by conducting experiments using 300mm tetraethyl orthosilicate (TEOS) blanket wafers. This study also explores brush pre-treatment in the CMP tool and proposes recipe effects, and critical process parameters for optimized CMP in-situ cleaning process through experimental results.

Effect of PVA Brush Contamination on Post-CMP Cleaning Performance (Post-CMP Cleaning에서 PVA 브러시 오염이 세정 효율에 미치는 영향)

  • Cho, Han-Chul;Yuh, Min-Jong;Kim, Suk-Joo;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.2
    • /
    • pp.114-118
    • /
    • 2009
  • PVA (polyvinyl alcohol) brush cleaning method is a typical cleaning method for semiconductor cleaning process especially post-CMP cleaning. PVA brush contacts with the wafer surface and abrasive particle, generating the contact rotational torque of the brush, which is the removal mechanism. The brush rotational torque can overcome theoretically the adhesion force generated between the abrasive particle and wafer by zeta potential. However, after CMP (chemical mechanical polishing) process, many particles remained on the wafer because the brush was contaminated in previous post-CMP cleaning step. The abrasive particle on the brush redeposits to the wafer. The level of the brush contamination increased according to the cleaning run time. After cleaning the brush, the level of wafer contamination dramatically decreased. Therefore, the brush cleanliness effect on the cleaning performance and it is important for the brush to be maintained clearly.

The Effect of Additives in post Ru CMP Cleaning (Post Ru CMP Cleaning에서의 첨가제에 따른 영향)

  • Cho, Byung-Gwun;Kim, In-Kwon;Kim, Tae-Gon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.557-557
    • /
    • 2007
  • 최근 Ruthenium (Ru)은 높은 화학적 안정성, 누설전류에 대한 높은 저항성, 저유전체와의 높은 안정성 등과 같은 특성으로 인해 캐패시터의 하부전극으로 각광받고 있다. 이렇게 형성된 Ru 하부전극은 각 캐패시터간의 분리와 평탄화를 위해 CMP 공정이 도입되게 되었다. 이러한 CMP 공정후에는 화학적 또는 물리적 상호작용에 의해 웨이퍼 표면에 오염물이 발생할 수 있다. CMP 공정중에 공급되는 슬러리에는 부식액, pH 적정제, 연마입자등이 첨가되는데 이때 사용된 연마입자는 CMP 공정후 입자오염을 유발할 수 있다. 그러므로, CMP 공정후에는 이러한 오염으로 인해 cleaning 공정이 반드시 필요하게 되었다. 하지만, Post Ru CMP cleaning에 대한 연구는 아직 미비한 상태이다. 그리하여 본 연구에서는 post Ru CMP cleaning에 대한 연구와 cleaning solution 그리고 첨가제에 따른 영향을 살펴보았다.

  • PDF

Application of Surfactant added DHF to Post Oxide CMP Cleaning Process (계면활성제가 첨가된 DHF의 Post-Oxide CMP 세정 공정에의 적용 연구)

  • Ryu, Chung;Kim, You-Hyuk
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.608-613
    • /
    • 2003
  • In order to remove particles on surface of post-oxide CMP wafer, new cleaning solution was prepared by mixing with DHF (Diluted HF), nonionic surfactant PAAE (Polyoxyethylene Alkyl Aryl Ether), DMSO (Dimethylsulfoxide) and D.I.W.. Silicone wafers were intentionally contaminated by silica, alumina and PSL (polystylene latex) which had different zeta potentials in cleaning solution. This cleaning solution under megasonic irradiation could remove particles and metals simultaneously at room temperature in contrast to traditional AMP (mixture of $NH_4OH,\;H_2O_2$ and D.I.W) without any side effects such as increasing of microroughness, metal line corrosion and deposition of organic contaminants. This suggests that this cleaning solution would be useful future application with copper CMP in brush cleaning process as well as traditional post CMP cleaning process.

Effect of Chemical Mechanical Cleaning(CMC) on Particle Removal in Post-Cu CMP Cleaning (구리 CMP 후 연마입자 제거에 화학 기계적 세정의 효과)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1023-1028
    • /
    • 2009
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-step CMP consists of Cu and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the chemical mechanical cleaning(CMC) is performed various conditions as a cleaning process. The CMC process combined mechanical cleaning by friction between a wafer and a pad and chemical cleaning by CMC solution consists of tetramethyl ammonium hydroxide (TMAH) / benzotriazole (BTA). This paper studies the removal of abrasive on the Cu wafer and the cleaning efficiency of CMC process.

Effect of buffing on particle removal in post-Cu CMP cleaning (구리 CMP 후 연마입자 제거에 버프 세정의 효과)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1880-1884
    • /
    • 2008
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-steop CMP consists of Cu CMP and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the buffing is performed various conditions as a cleaning process. The buffing process combined mechanical cleaning by friction between a wafer and a buffing pad and chemical cleaning by buffing solution consists of tetramethyl ammonium hydroxide (TMAH)/benzotriazole(BTA).

  • PDF

Contact Pressure Distribution Measurement of PVA Brush for Post CMP Cleaning (CMP 후 세정용 PVA 브러쉬의 접촉압력 분포 측정)

  • Ryu, Sun-Joong;Kim, Doeg Jung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.73-78
    • /
    • 2016
  • Contact pressure distribution between PVA brush and semiconductor wafer was measured by developing a test setup which could simulates the post CMP cleaning process. The test set-up used thin film type pressure sensor which could measure the pressure distribution of contact area with the resolution of $15.5ea/cm^2$. As the experimental results, it was verified that there had been severe contact pressure non-uniformity along the axis of the brush and between the adjacent projections on the brush's surface. These results should be considered when developing post CMP cleaning stage or designing the PVA brush.

Effect of Post-CMP Cleaning On Electrochemical Characteristics of Cu and Ti in Patterned Wafer

  • Noh, Kyung-Min;Kim, Eun-Kyung;Lee, Yong-Keun;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.3
    • /
    • pp.174-178
    • /
    • 2009
  • The effects of post-CMP cleaning on the chemical and galvanic corrosion of copper (Cu) and titanium (Ti) were studied in patterned silicon (Si) wafers. First, variation of the corrosion rate was investigated as a function of the concentration of citric acid that was included in both the CMP slurry and the post-CMP solution. The open circuit potential (OCP) of Cu decreased as the citric acid concentration increased. In contrast with Cu, the OCP of titanium (Ti) increased as this concentration increased. The gap in the OCP between Cu and Ti increased as citric acid concentration increased, which increased the galvanic corrosion rate between Cu and Ti. The corrosion rates of Cu showed a linear relationship with the concentrations of citric acid. Second, the effect of Triton X-$100^{(R)}$, a nonionic surfactant, in a post-CMP solution on the electrochemical characteristics of the specimens was also investigated. The OCP of Cu decreased as the surfactant concentration increased. In contrast with Cu, the OCP of Ti increased greatly as this concentration increased. Given that Triton X-$100^{(R)}$ changes its micelle structure according to its concentration in the solution, the corrosion rate of each concentration was tested.

Effect of chemical in post Ru CMP Cleaning solutions on abrasive particle adhesion and removal (Post Ru CMP Cleaning에서 연마입자의 흡착과 제거에 대한 chemical의 첨가제에 따른 영향)

  • Kim, In-Kwon;Kim, Tae-Gon;Cho, Byung-Gwun;Son, Il-Ryong;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.529-529
    • /
    • 2007
  • Ruthenium (Ru) is a white metal and belongs to platinum group which is very stable chemically and has a high work function. It has been widely studied to apply Ru as an electrode material in memory devices and a Cu diffusion barrier metal for Cu interconnection due to good electrical conductivity and adhesion property to Cu layer. To planarize deposited Ru layer, chemical mechanical planarization(CMP) was suggested. However, abrasive particle can induce particle contamination on the Ru layer surface during CMP process. In this study, zeta potentials of Ru and interaction force of alumina particles with Ru substrate were measured as a function of pH. The etch rate and oxidation behavior were measured as a function of chemical concentration of several organic acids and other acidic and alkaline chemicals. PRE (particle removal efficiency) was also evaluated in cleaning chemical.

  • PDF

Surface Characteristics of PZT-CMP by Post-CMP Process (PZT-CMP 공정시 후처리 공정에 따른 표면 특성)

  • Jun, Young-Kil;Lee, Woo-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10a
    • /
    • pp.103-104
    • /
    • 2006
  • $Pb(Zr,Ti)O_3(PZT)$ is very attractive ferroelectric materials for ferroelectric random access memory (FeRAM) applications because of its high polarization ability and low process temperature. However, Chemical Mechanical Polishing (CMP) pressure and velocity must be carefully adjusted because FeRAM shrinks to high density devices. The contaminations such as slurry residues due to the absence of the exclusive cleaning chemicals are enough to influence on the degradation of PZT thin film capacitors. The surface characteristics of PZT thin film were investigated by the change of process parameters and the cleaning process. Both the low CMP pressure and the cleaning process must be employed, even if the removal rate and the yield were decreased, to reduce the fatigue of PZT thin film capacitors fabricated by damascene process. Like this, fatigue characteristics were partially controlled by the regulation of the CMP process parameters in PZT damascene process. And the exclusive cleaning chemicals for PZT thin films were developed in this work.

  • PDF