• Title/Summary/Keyword: potassium channel

Search Result 218, Processing Time 0.03 seconds

Characteristics of Potassium Channel in the Isolated Rat Detrusor Muscle (흰쥐 배뇨근에 존재하는 potassium 통로의 특성)

  • Jang, Myeong-Soo;Choi, Eun-Me;Ha, Jeoung-Hee;Lee, Kwang-Youn;Kim, Won-Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.11 no.2
    • /
    • pp.363-374
    • /
    • 1994
  • The purpose of this study was to investigate the characteristics or the potassium channels existing in the rat urinary bladders. Smooth muscle strips of rat detrusor urinae were examined by isometric myography. Relaxation responses of detrusor muscle strips to the three potassium channel openers pinacidil, a cyanoguanidine derivative, BRL 38227, a benzopyran derivative and RP 52891, a tertrahydrothiopyran derivative were examined. The potassium channel openers reduced the basal tone, and the rank order of potency was RP 52891>pincidil>BRL 38227. Procaine, an inhibitor of the voltage-sensitive potassium channel tended to increase the basal tone, but it did not affect the relaxant effects of the calcium-activated potassium channel opener did not antagonize the relaxant effects, but it reduced the Emax of RP 52891 and BRL 38227. Glibenclamide, an inhibitor of the ATP-sensitive potassium channel, antagonized the relaxant effects of pinacidil, RP 52891 and BRL 38227 reducing the Emax of RP 52891 and BRl 38227. Galanin which inhibits secretion of insulin through opening the ATP-sensitive potassium channels in pancreatic ${\beta}$-cells rather increased the basal tone of the isolated detrusor strips. These results suggest that the urinary bladder of the rat has mainly the ATP-sensitive, glibenclamide sensitive potassium channel, which is a different type from that in the pancreatic ${\beta}$-islet cells..

  • PDF

The large-conductance calcium-activated potassium channel holds the key to the conundrum of familial hypokalemic periodic paralysis

  • Kim, June-Bum;Kim, Sung-Jo;Kang, Sun-Yang;Yi, Jin Woong;Kim, Seung-Min
    • Clinical and Experimental Pediatrics
    • /
    • v.57 no.10
    • /
    • pp.445-450
    • /
    • 2014
  • Purpose: Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant channelopathy characterized by episodic attacks of muscle weakness and hypokalemia. Mutations in the calcium channel gene, CACNA1S, or the sodium channel gene, SCN4A, have been found to be responsible for HOKPP; however, the mechanism that causes hypokalemia remains to be determined. The aim of this study was to improve the understanding of this mechanism by investigating the expression of calcium-activated potassium ($K_{Ca}$) channel genes in HOKPP patients. Methods: We measured the intracellular calcium concentration with fura-2-acetoxymethyl ester in skeletal muscle cells of HOKPP patients and healthy individuals. We examined the mRNA and protein expression of KCa channel genes (KCNMA1, KCNN1, KCNN2, KCNN3, and KCNN4) in both cell types. Results: Patient cells exhibited higher cytosolic calcium levels than normal cells. Quantitative reverse transcription polymerase chain reaction analysis showed that the mRNA levels of the $K_{Ca}$ channel genes did not significantly differ between patient and normal cells. However, western blot analysis showed that protein levels of the KCNMA1 gene, which encodes $K_{Ca}$1.1 channels (also called big potassium channels), were significantly lower in the membrane fraction and higher in the cytosolic fraction of patient cells than normal cells. When patient cells were exposed to 50 mM potassium buffer, which was used to induce depolarization, the altered subcellular distribution of BK channels remained unchanged. Conclusion: These findings suggest a novel mechanism for the development of hypokalemia and paralysis in HOKPP and demonstrate a connection between disease-associated mutations in calcium/sodium channels and pathogenic changes in nonmutant potassium channels.

INFLUENCE OF PINACIDIL ON CATECHOLAMINE SECRETION EVOKED BY CHOLINERGIC STIMULATION AND MEMBRANE DEPOLARIZATION FROM THE RAT ADRENAL GLAND

  • Lim, Dong-Yoon;Park, Geun-Hong;Choi, Cheol-Hee;Ko, Suk-Tai
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1998.11a
    • /
    • pp.148-149
    • /
    • 1998
  • It has been known that potassium channel openers are a new class of molecules that have attracted general interest because of their potent antihypertensive activity in vivo and vasorelaxant activity in vitro (Hamilton and Weston, 1989). In the present study, it was attempted to examine the effect of the potassium channel opener on catecholamine (CA) secretion evoked by cholinergic stimulation, membrane depolarization and calcium mobilization from the isolated perfused rat adrenal gland. The perfusion of pinacidil (30-300 uM) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in CA secretion evoked by ACh (5.32 mM), high $K^{+}$ (56 mM), DMPP (100 uM for 2 min), McN-A-343 (100 uM for 2 min), cyclopiazonic acid (10 uM for 4 min) and Bay-K-8644 (10 uM for 4 min). Also, under the presence of minoxidil (100 uM), which is also known to be a potassium channel activator, CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with pinacidil (100 uM) under the presence of glibenclamide (1 uM), an antidiabetic sulfonylurea that has been shown to be a specific blocker of ATP-regulated potassium channels (for 20 min), CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were considerably recovered to a considerable extent of the normal release as compared to that of pinacidil only. These results, taken together, suggest that pinacidil cause the marked inhibition of CA secretion evoked by stimulation of cholinergic (both nicotinic and muscarinic) receptors as well as by membrane depolarization, indicating strongly that this effect may be mediated by inhibiting influx of extracellular calcium and release in intracellular calcium in the rat adrenomedullary chromaffin cells. Furthermore, these findings suggest strongly that these potassium channel openers-sensitive membrane potassium channels also play an important role in regulating CA secretion.

  • PDF

Effects of Adenylate Cyclase, Guanylate Cyclase and KATP Channel Blockade on the Cerebral Blood Flow Response Induced by Adenosine A2B Receptor Agonist in the Rats

  • Youn, Doo-Sang;Shin, In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This study was performed to investigate the regulatory mechanism of cerebral blood flow of adenosine A$_{2B}$ receptor agonist in the rats, and to define whether its mechanism is mediated by adenylate cyclase, guanylate cyclase and potassium channel. In pentobarbital-anesthetized, pancuronium-paralyzed and artificially ventilated male Sprague-Dawley rats, all drugs were applied topically to the cerebral cortex. Blood flow from cerebral cortex was measured using laser-Doppler flowmetry. Topical application of an adenosine A$_{2B}$ receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA; 4 umol/I) increased cerebral blood flow. This effect of NECA (4 umol/I) was not blocked by pretreatment with adenylate cyclase inhibitor, MDL-12,330 (20 umol/I). But effect of NECA (4 umol/I) was blocked by pretreatment with guanylate cyclase inhibitor, LY-83,583 (10 umol/I) and pretreatment with ATP-sensitive potassium channel inhibitor, glipizide (5 umol/I). These results suggest that adenosine A$_{2B}$ receptor increases cerebral blood flow. It seems that this action of adenosine A$_{2B}$ receptor is mediated via the activation of guanylate cyclase and ATP-sensitive potassium channel in the cerebral cortex of the rats.

Effects of KATP Channel Blocker, cAMP and cGMP on the Cardiovascular Response of Adenosine A1 Agonist in the Spinal Cord of the Rats

  • Shin In-Chul
    • Biomolecules & Therapeutics
    • /
    • v.14 no.2
    • /
    • pp.119-124
    • /
    • 2006
  • This study was performed to investigate the influence of the spinal adenosine $A_1$ receptors on the central regulation of blood pressure (BP) and heart rate (HR), and to define whether its mechanism is mediated by cyclic AMP (cAMP), cyclic GMP (cGMP) or potassium channel. Intrathecal (i.t.) administration of drugs at the thoracic level were performed in anesthetized, artificially ventilated male Sprague-Dawley rats. I.t. injection of adenosine $A_1$ receptor agonist, $N^6$-cyclohexyladenosine (CHA; 1, 5 and 10 nmol) produced dose dependent decrease of BP and HR and it was attenuated by pretreatment of 50 nmol of 8-cyclopentyl-1,3-dimethylxanthine, a specific adenosine $A_1$ receptor antagonist. Pretreatment with a cAMP analogue, 8-bromo-cAMP, also attenuated the depressor and bradycardiac effects of CHA (10 nmol), but not with cGMP analogue, 8-bromo-cGMP. Pretreatment with a ATP-sensitive potassium channel blocker, glipizide (20 nmol) also attenuated the depressor and bradycardiac effects of CHA (10 nmol). These results suggest that adenosine $A_1$ receptor in the spinal cord plays an inhibitory role in the central cardiovascular regulation and that this depressor and bradycardiac actions are mediated by cAMP and potassium channel.

Change of voltage-gated potassium channel 1.7 expressions in monocrotaline-induced pulmonary arterial hypertension rat model

  • Lee, Hyeryon;Kim, Kwan Chang;Hong, Young Mi
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.9
    • /
    • pp.271-278
    • /
    • 2018
  • Purpose: Abnormal potassium channels expression affects vessel function, including vascular tone and proliferation rate. Diverse potassium channels, including voltage-gated potassium (Kv) channels, are involved in pathological changes of pulmonary arterial hypertension (PAH). Since the role of the Kv1.7 channel in PAH has not been previously studied, we investigated whether Kv1.7 channel expression changes in the lung tissue of a monocrotaline (MCT)-induced PAH rat model and whether this change is influenced by the endothelin (ET)-1 and reactive oxygen species (ROS) pathways. Methods: Rats were separated into 2 groups: the control (C) group and the MCT (M) group (60 mg/kg MCT). A hemodynamic study was performed by catheterization into the external jugular vein to estimate the right ventricular pressure (RVP), and pathological changes in the lung tissue were investigated. Changes in protein and mRNA levels were confirmed by western blot and polymerase chain reaction analysis, respectively. Results: MCT caused increased RVP, medial wall thickening of the pulmonary arterioles, and increased expression level of ET-1, ET receptor A, and NADPH oxidase (NOX) 4 proteins. Decreased Kv1.7 channel expression was detected in the lung tissue. Inward-rectifier channel 6.1 expression in the lung tissue also increased. We confirmed that ET-1 increased NOX4 level and decreased glutathione peroxidase-1 level in pulmonary artery smooth muscle cells (PASMCs). ET-1 increased ROS level in PASMCs. Conclusion: Decreased Kv1.7 channel expression might be caused by the ET-1 and ROS pathways and contributes to MCT-induced PAH.

The Effect of ATP-sensitive Potassium Channel on R-PIA Induced Mechanical Antiallodynia in a Peripheral Neuropathic Rat (신경병증 통증 모델의 백서에서 R-PIA의 기계적 항이질통 효과와 ATP-감수성 칼륨 통로와의 연관성에 대한 연구)

  • Min, Hong Gi;Seong, Seung Hye;Jung, Sung Mun;Shin, Jin Woo;Gwak, Mi Jung;Leem, Jeong Gill;Lee, Cheong
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.107-112
    • /
    • 2005
  • Background: Nerve ligation injury may produce mechanical allodynia, but this can be reversed after an intrathecal administration of adenosine analogues. In many animal and human studies, ATP-sensitive potassium channel blockers have been known to reverse the antinociceptive effect of various drugs. This study was performed to evaluate the mechanical antiallodynic effects of spinal R-PIA (Adenosine A1 receptor agonist) and the reversal of these effects due to pretreatment with glibenclamide (ATP-sensitive potassium channel blocker). Thus, the relationship between the antiallodynic effects of R-PIA and ATP-sensitive potassium channel were investigated in a neuropathic model. Methods: Male Sprague Dawley rats were prepared by tightly ligating the left lumbar 5th and 6th spinal nerves and implantation of a chronic lumbar intrathecal catheter for drug administration. The mechanical allodynia was measured by applying von Frey filaments ipsilateral to the lesioned hind paw. And the thresholds for paw withdrawal assessed. In study 1, either R-PIA (0.5, 1 and $2{\mu}g$) or saline were administered intrathecally for the examination of the antiallodynic effect of R-PIA. In study 2, glibenclamide (2, 5, 10 and 20 nM) was administered intrathecally 5 min prior to an R-PIA injection for investigation of the reversal of the antiallodynic effects of R-PIA. Results: The antiallodynic effect of R-PIA was produced in a dose dependent manner. In study 1, the paw withdrawal threshold was significantly increased with $2{\mu}g$ R-PIA (P < 0.05). In study 2, the paw withdrawal threshold with $2{\mu}g$ R-PIA was significantly decreased almost dose dependently by intrathecal pretreatment of 5, 10 and 20 nM glibenclamide (P < 0.05). Conclusions: These results demonstrated that an intrathecal injection of ATP-sensitive potassium channel blockers prior to an intrathecal injection of adenosine A1 receptors agonist had an antagonistic effect on R-PIA induced antiallodynia. The results suggest that the mechanism of mechanical antiallodynia, as induced by an intrathecal injection of R-PIA, may involve the ATP-sensitive potassium channel at both the spinal and supraspinal level in a rat nerve ligation injury model.

Effect of Extracellular Potassium on Delayed Rectifier Potassium Channel Proteins of KCNQ3 and KCNQ5 in Familial Hypokalemic Periodic Paralysis (가족성 저칼륨성 주기성 마비에서 세포외 칼륨농도가 지연성 정류형 채널을 형성하는 KCNQ3와 KCNQ5 단백질에 미치는 효과)

  • Kim, Sung-Jo;Kim, Dong-Hyun;Kim, June-Bum
    • Journal of Life Science
    • /
    • v.19 no.10
    • /
    • pp.1484-1488
    • /
    • 2009
  • Familial hypokalemic periodic paralysis (HOKPP) is an autosomal dominant muscle disorder characterized by episodic attacks of muscle weakness with concomitant hypokalemia. Mutations in either a calcium channel gene (CACNA1S) or a sodium channel gene (SCN4A) have been shown to be responsible for this disease. The combination of sarcolemmal depolarization and hypokalemia has been attributed to abnormalities of the potassium conductance governing the resting membrane potential. To understand the pathophysiology of this disorder, we examined both mRNA and protein levels of delayed rectifier potassium channel genes, KCNQ3 and KCNQ5, in skeletal muscle fibers biopsied from patients with HOKOur results showed an increase in the cytoplasmic level of KCNQ3 protein in patients' cells exposed to 50 mM external concentration of potassium. However, mRNA levels of both channel genes did not show significant change in the same condition. Our results suggest that long term exposure of skeletal muscle cells in HOKPP patients to high extracellular potassium alters the KCNQ3 localization, which could possibly hinder the normal function of this channel protein. These findings may provide an important clue to understanding the molecular mechanism of familial hypokalemic periodic paralysis.

Characteristics and functions of shaker like potassium channels in rice (벼 shaker like potassium channel들의 특성과 기능)

  • Hwang, Hyun-Sik;Kim, Hyun-Mi;Jeong, Min-A;Kim, Dong-Hern;Byun, Myung-Ok;Kim, Beom-Gi
    • Journal of Plant Biotechnology
    • /
    • v.37 no.4
    • /
    • pp.539-548
    • /
    • 2010
  • Potassium ($K^+$) is one of the most abundant cations in higher plant. It comprises about 10% of plant dry weight and it plays roles in numerous functions such as osmo- and turgor regulation, charge balance of plasma membrane and control of stomata and organ movement. Several potassium transporters and potassium channels regulate $K^+$ homeostasis in response to $K^+$ uptake systems. In this review, we describe the biological, biochemical and physiological characteristics of shaker like potassium channels in higher plant. Especially, we searched the rice genome databases and analysized expressed genes, genome structures and protein domain characteristics of shaker like potassium channels.

Antinociceptive Effect of the Intrathecal Phosphodiesterase Inhibitor, Zaprinast, in a Rat Formalin Test

  • Heo, Burn Young;Kim, Chang Mo;Jeong, Sung Tae;Kim, Seok Jai;Choi, Jeong II;Yoon, Myung Ha
    • The Korean Journal of Pain
    • /
    • v.18 no.2
    • /
    • pp.99-106
    • /
    • 2005
  • Background: Cyclic guanosine monophosphate (cGMP) and opioid receptors are involved in the modulation of nociception. Although the opioid receptors agonists are active in pain, the effect of an phospodiesterase inhibitor (zaprinast) for increasing the level of cGMP has not been thoroughly investigated at the spinal level. This study examined the effects of intrathecal zaprinast and morphine in a nociceptive test and we also examined the nature of the pharmacological interaction after the coadministration of zaprinast with morphine. The role of the nitric oxide (NO)-cGMP-potassium channel pathway on the effect of zaprinast was further clarified. Methods: Catheters were inserted into the intrathecal space of male SD rats. For the induction of pain, $50{\mu}l$ of 5% formalin solution was applied to the hindpaw. Isobolographic analysis was used for the evaluation of the drug interaction between zaprinast and morphine. Furthermore, NO synthase inhibitor ($_L-NMMA$), guanylyl cyclase inhibitor (ODQ) or a potassium channel blocker (glibenclamide) were intrathecally administered to verify the involvement of the NO-cGMP- potassium channel pathway on the antinociception effect of zaprinast. Results: Both zaprinast and morphine produced an antinociceptive effect during phase 1 and phase 2 in the formalin test. Isobolographic analysis revealed a synergistic interaction after the intrathecal administration of the zaprinast-morphine mixture in both phases. Intrathecal $_L-NMMA$, ODQ and glibenclamide did not reverse the antinociception of zaprinast in either phase. Conclusions: These results suggest that zaprinast, morphine and the mixture of the two drugs are effective against acute pain and they facilitated pain state at the spinal level. Thus, the spinal combination of zaprinast with morphine may be useful for the management of pain. However, the NO-sensitive cGMP-potassium channel pathway did not contribute to the antinocieptive mechanism of zaprinast in the spinal cord.