• Title/Summary/Keyword: potassium chloride cotransporter 2

Search Result 3, Processing Time 0.018 seconds

$Ca^{2+}$ is a Regulator of the WNK/OSR1/NKCC Pathway in a Human Salivary Gland Cell Line

  • Park, Soonhong;Ku, Sang Kyun;Ji, Hye Won;Choi, Jong-Hoon;Shin, Dong Min
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.3
    • /
    • pp.249-255
    • /
    • 2015
  • Wnk kinase maintains cell volume, regulating various transporters such as sodium-chloride cotransporter, potassium-chloride cotransporter, and sodium-potassium-chloride cotransporter 1 (NKCC1) through the phosphorylation of oxidative stress responsive kinase 1 (OSR1) and STE20/SPS1-related proline/alanine-rich kinase (SPAK). However, the activating mechanism of Wnk kinase in specific tissues and specific conditions is broadly unclear. In the present study, we used a human salivary gland (HSG) cell line as a model and showed that $Ca^{2+}$ may have a role in regulating Wnk kinase in the HSG cell line. Through this study, we found that the HSG cell line expressed molecules participating in the WNK-OSR1-NKCC pathway, such as Wnk1, Wnk4, OSR1, SPAK, and NKCC1. The HSG cell line showed an intracellular $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) increase in response to hypotonic stimulation, and the response was synchronized with the phosphorylation of OSR1. Interestingly, when we inhibited the hypotonically induced $[Ca^{2+}]_i$ increase with nonspecific $Ca^{2+}$ channel blockers such as 2-aminoethoxydiphenyl borate, gadolinium, and lanthanum, the phosphorylated OSR1 level was also diminished. Moreover, a cyclopiazonic acid-induced passive $[Ca^{2+}]_i$ elevation was evoked by the phosphorylation of OSR1, and the amount of phosphorylated OSR1 decreased when the cells were treated with BAPTA, a $Ca^{2+}$ chelator. Finally, through that process, NKCC1 activity also decreased to maintain the cell volume in the HSG cell line. These results indicate that $Ca^{2+}$ may regulate the WNK-OSR1 pathway and NKCC1 activity in the HSG cell line. This is the first demonstration that indicates upstream $Ca^{2+}$ regulation of the WNK-OSR1 pathway in intact cells.

Melatonin modulates nitric oxide-regulated WNK-SPAK/OSR-1-NKCC1 signaling in dorsal raphe nucleus of rats

  • Yang, Hye Jin;Kim, Mi Jung;Kim, Sung Soo;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.5
    • /
    • pp.449-457
    • /
    • 2021
  • The sleep-wake cycle is regulated by the alternating activity of sleep- and wake-promoting neurons. The dorsal raphe nucleus (DRN) secretes 5-hydroxytryptamine (5-HT, serotonin), promoting wakefulness. Melatonin secreted from the pineal gland also promotes wakefulness in rats. Our laboratory recently demonstrated that daily changes in nitric oxide (NO) production regulates a signaling pathway involving with-no-lysine kinase (WNK), Ste20-related proline alanine rich kinase (SPAK)/oxidative stress response kinase 1 (OSR1), and cation-chloride co-transporters (CCC) in rat DRN serotonergic neurons. This study was designed to investigate the effect of melatonin on NO-regulated WNK-SPAK/OSR1-CCC signaling in wake-inducing DRN neurons to elucidate the mechanism underlying melatonin's wake-promoting actions in rats. Ex vivo treatment of DRN slices with melatonin suppressed neuronal nitric oxide synthase (nNOS) expression and increased WNK4 expression without altering WNK1, 2, or 3. Melatonin increased phosphorylation of OSR1 and the expression of sodium-potassium-chloride co-transporter 1 (NKCC1), while potassium-chloride co-transporter 2 (KCC2) remained unchanged. Melatonin increased the expression of tryptophan hydroxylase 2 (TPH2, serotonin-synthesizing enzyme). The present study suggests that melatonin may promote its wakefulness by modulating NO-regulated WNK-SPAK/OSR1-KNCC1 signaling in rat DRN serotonergic neurons.

Anti-convulsant Effects of Methanol Extract of Gastrodia Elata on Kainic Acid-induced Epilepsy Mouse Model (Kainic acid로 유도된 생쥐의 간질 발작에 대한 천마 메탄올 추출물의 항경련 효과 연구)

  • Jang, Jung Hee;Bae, Chang-Hwan;Kim, Hyungwoo;Kim, Seungtae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.6
    • /
    • pp.614-620
    • /
    • 2014
  • Kainic acid (KA) is a excitatory agonist causing epileptic seizure and excitotoxicity in the hippocampus. Gastrodia Elata (GE) is known to have anti-convulsant and anti-oxidant effects. This study was investigated a possible role of GE in suppressing epileptic seizure using KA-induced epilepsy mouse model. Eight-week-old male C57BL/6 mice were administrated GE (50 or 500 mg/kg) once a day for 5 days, and then injected KA (30 mg/kg) intraperitoneally. Behavioral changes in mice by KA were evaluated for 90 minutes immediately after the KA administration. Six hours after the KA administration, their brains were harvested and the expressions of glutamate decarboxylase 67 (GAD-67) and K+-Cl- cotransporter 2 (KCC2) in the hippocampus of the mice were measured by immunohistochemistry.GE delayed the onset of epileptic seizure after KA administration, suppressed the severity of the seizure and decreased the number of severe seizures dose dependently. Moreover, GAD-67 and KCC2 expressions in the cornu ammonis (CA) 1 and CA3 of 500 mg/kg GE administrated mice were significantly increased compared to those in KA-treated mice.GAD-67 and KCC2 play an important role in regulating GABAergic system. Our results suggest that GE has anti-convulsant effect against KA-induced epileptic seizure through enhancing GABAergic system.