• Title/Summary/Keyword: proton

Search Result 2,413, Processing Time 0.03 seconds

Proton Therapy Review: Proton Therapy from a Medical

  • Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.99-110
    • /
    • 2020
  • With hope and concern, the first Korean proton therapy facility was introduced to the National Cancer Center (NCC) in 2007. It added a new chapter to the history of Korean radiation therapy. There have been challenging clinical trials using proton beam therapy, which has seen many impressive results in cancer treatment. Compared to the rapidly increasing number of proton therapy facilities in the world, only one more proton therapy center has been added since 2007 in Korea. The Samsung Medical Center installed a proton therapy facility in 2015. Most radiation oncology practitioners would agree that the physical properties of the proton beam provide a clear advantage in radiation treatment. But the expensive cost of proton therapy facilities is still one of the main reasons that hospitals are reluctant to introduce them in Korea. I herein introduce the history of proton therapy and the cutting edge technology used in proton therapy. In addition, I will cover the role of a medical physicist in proton therapy and the future prospects of proton therapy, based on personal experience in participating in proton therapy programs from the beginning at the NCC.

Feasibility Test of Flat-Type Faraday Cup for Ultrahigh-Dose-Rate Transmission Proton Beam Therapy

  • Sang-il Pak;Sungkoo Cho;Seohyeon An;Seonghoon Jeong;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.108-113
    • /
    • 2022
  • Purpose: Proton therapy has been used for optimal cancer treatment by adapting its Bragg-peak characteristics. Recently, a tissue-sparing effect was introduced in ultrahigh-dose-rate (FLASH) radiation; the high-energy transmission proton beam is considered in proton FLASH therapy. In measuring high-energy/ultrahigh-dose-rate proton beam, Faraday Cup is considered as a dose-rate-independent measurement device, which has been widely studied. In this paper, the feasibility of the simply designed Faraday Cup (Poor Man's Faraday Cup, PMFC) for transmission proton FLASH therapy is investigated. Methods: In general, Faraday cups were used in the measurement of charged particles. The simply designed Faraday Cup and Advanced Markus ion chamber were used for high-energy proton beam measurement in this study. Results: The PMFC shows an acceptable performance, including accuracy in general dosimetric tests. The PMFC has a linear response to the dose and dose rate. The proton fluence was decreased with the increase of depth until the depth was near the proton beam range. Regarding secondary particles backscatter from PMFC, the effect was negligible. Conclusions: In this study, we performed an experiment to investigate the feasibility of PMFC for measuring high-energy proton beams. The PMFC can be used as a beam stopper and secondary monitoring system for transmission proton beam FLASH therapy.

Measurement of Proton Beam Dose-Averaged Linear Energy Transfer Using a Radiochromic Film

  • Seohyeon An;Sang-il Pak;Seonghoon Jeong;Soonki Min;Tae Jeong Kim;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.80-87
    • /
    • 2022
  • Purpose: Proton therapy has different relative biological effectiveness (RBE) compared with X-ray treatment, which is the standard in radiation therapy, and the fixed RBE value of 1.1 is widely used. However, RBE depends on a charged particle's linear energy transfer (LET); therefore, measuring LET is important. We have developed a LET measurement method using the inefficiency characteristic of an EBT3 film on a proton beam's Bragg peak (BP) region. Methods: A Gafchromic EBT3 film was used to measure the proton beam LET. It measured the dose at a 10-cm pristine BP proton beam in water to determine the quenching factor of the EBT3 film as a reference beam condition. Monte Carlo (MC) calculations of dose-averaged LET (LETd) were used to determine the quenching factor and validation. The dose-averaged LETs at the 12-, 16-, and 20-cm pristine BP proton beam in water were calculated with the quenching factor. Results: Using the passive scattering proton beam nozzle of the National Cancer Center in Korea, the LETd was measured for each beam range. The quenching factor was determined to be 26.15 with 0.3% uncertainty under the reference beam condition. The dose-averaged LETs were measured for each test beam condition. Conclusions: We developed a method for measuring the proton beam LET using an EBT3 film. This study showed that the magnitude of the quenching effect can be estimated using only one beam range, and the quenching factor determined under the reference condition can be applied to any therapeutic proton beam range.

Dosimetric Impact of Ti Mesh on Proton Beam Therapy

  • Cho, Shinhaeng;Goh, Youngmoon;Kim, Chankyu;Kim, Haksoo;Jeong, Jong Hwi;Lim, Young Kyung;Lee, Se Byeong;Shin, Dongho
    • Progress in Medical Physics
    • /
    • v.28 no.4
    • /
    • pp.144-148
    • /
    • 2017
  • When a high density metallic implant is placed in the path of the proton beam, spatial heterogeneity can be caused due to artifacts in three dimensional (3D) computed tomography (CT) scans. These artifacts result in range uncertainty in dose calculation in treatment planning system (TPS). And this uncertainty may cause significant underdosing to the target volume or overdosing to normal tissue beyond the target. In clinical cases, metal implants must be placed in the beam path in order to preserve organ at risk (OARs) and increase target coverage for tumors. So we should introduce Ti-mesh. In this paper, we measured the lateral dose profile for proton beam using an EBT3 film to confirm dosimetric impact of Ti-mesh when the Ti-mesh plate was placed in the proton beam pathway. The effect of Ti-mesh on the proton beam was investigated by comparing the lateral dose profile calculated from TPS with the film-measured value under the same conditions.

Effects on the Proton Conduction Limiting Barriers and Trajectories in BaZr0.875Y0.125O3 Due to the Presence of Other Protons

  • Gomez, Maria A.;Fry, Dana L.;Sweet, Marie E.
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.521-528
    • /
    • 2016
  • Kinetic Monte Carlo (KMC) and graph searches show that proton conduction limiting barriers and trajectories in $BaZr_{0.875}Y_{0.125}O_3$ are affected by the presence of other protons. At 1000 K, KMC limiting conduction barriers increase from 0.39 eV to 0.45 eV as the proton number is increased. The proton-proton radial distribution begins to rise at $2{\AA}$ and peaks at $4{\AA}$, which is half the distance expected, based on the proton concentration. Density functional theory (DFT) calculations find proton/proton distances of 2.60 and $2.16{\AA}$ in the lowest energy two-proton configurations. A simple average of the limiting barriers for 7-10 step periodic long range paths found via graph theory at 1100 K shows an increase in activation barrier from 0.32 eV to 0.37 eV when a proton is added. Both KMC and graph theory show that protons can affect each other's pathways and raise the overall conduction barriers.

Upgrade of gamma electron vertex imaging system for high-performance range verification in pencil beam scanning proton therapy

  • Kim, Sung Hun;Jeong, Jong Hwi;Ku, Youngmo;Jung, Jaerin;Cho, Sungkoo;Jo, Kwanghyun;Kim, Chan Hyeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1016-1023
    • /
    • 2022
  • In proton therapy, a highly conformal proton dose can be delivered to the tumor by means of the steep distal dose penumbra at the end of the beam range. The proton beam range, however, is highly sensitive to range uncertainty, which makes accurately locating the proton range in the patient difficult. In-vivo range verification is a method to manage range uncertainty, one of the promising techniques being prompt gamma imaging (PGI). In earlier studies, we proposed gamma electron vertex imaging (GEVI), and constructed a proof-of-principle system. The system successfully demonstrated the GEVI imaging principle for therapeutic proton pencil beams without scanning, but showed some limitations under clinical conditions, particularly for pencil beam scanning proton therapy. In the present study, we upgraded the GEVI system in several aspects and tested the performance improvements such as for range-shift verification in the context of line scanning proton treatment. Specifically, the system showed better performance in obtaining accurate prompt gamma (PG) distributions in the clinical environment. Furthermore, high shift-detection sensitivity and accuracy were shown under various range-shift conditions using line scanning proton beams.

Effor Analysis of a 20MeV DTL for PEFP

  • Jang Ji-ho;Cho Yong-sub;Han Jang-min;Kwon Hyeok-Jung;Jeong Kyoung-keun;Choi Byung-ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2003.05a
    • /
    • pp.430.1-430.1
    • /
    • 2003
  • PDF