• Title/Summary/Keyword: quasi-Armendariz ring

Search Result 5, Processing Time 0.02 seconds

QUASI-ARMENDARIZ PROPERTY FOR SKEW POLYNOMIAL RINGS

  • Baser, Muhittin;Kwa, Tai Keun
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.4
    • /
    • pp.557-573
    • /
    • 2011
  • The concept of the quasi-Armendariz property of rings properly contains Armendariz rings and semiprime rings. In this paper, we extend the quasi-Armendariz property for a polynomial ring to the skew polynomial ring, hence we call such ring a ${\sigma}$-quasi-Armendariz ring for a ring endomorphism ${\sigma}$, and investigate its structures, several extensions and related properties. In particular, we study the semiprimeness and the quasi-Armendariz property between a ring R and the skew polynomial ring R[x;${\sigma}$$] of R, and so these provide us with an opportunity to study quasi-Armendariz rings and semiprime rings in a general setting, and several known results follow as consequences of our results.

SKEW POLYNOMIAL RINGS OVER SEMIPRIME RINGS

  • Hong, Chan-Yong;Kim, Nam-Kyun;Lee, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.5
    • /
    • pp.879-897
    • /
    • 2010
  • Y. Hirano introduced the concept of a quasi-Armendariz ring which extends both Armendariz rings and semiprime rings. A ring R is called quasi-Armendariz if $a_iRb_j$ = 0 for each i, j whenever polynomials $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x]$ satisfy f(x)R[x]g(x) = 0. In this paper, we first extend the quasi-Armendariz property of semiprime rings to the skew polynomial rings, that is, we show that if R is a semiprime ring with an epimorphism $\sigma$, then f(x)R[x; $\sigma$]g(x) = 0 implies $a_iR{\sigma}^{i+k}(b_j)=0$ for any integer k $\geq$ 0 and i, j, where $f(x)\;=\;\sum_{i=0}^ma_ix^i$, $g(x)\;=\;\sum_{j=0}^mb_jx^j\;{\in}\;R[x,\;{\sigma}]$. Moreover, we extend this property to the skew monoid rings, the Ore extensions of several types, and skew power series ring, etc. Next we define $\sigma$-skew quasi-Armendariz rings for an endomorphism $\sigma$ of a ring R. Then we study several extensions of $\sigma$-skew quasi-Armendariz rings which extend known results for quasi-Armendariz rings and $\sigma$-skew Armendariz rings.

SOME EXAMPLES OF QUASI-ARMENDARIZ RINGS

  • Hashemi, Ebrahim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.3
    • /
    • pp.407-414
    • /
    • 2007
  • In [12], McCoy proved that if R is a commutative ring, then whenever g(x) is a zero-divisor in R[x], there exists a nonzero c $\in$ R such that cg(x) = 0. In this paper, first we extend this result to monoid rings. Then for a monoid M, we give some examples of M-quasi-Armendariz rings which are a generalization of quasi-Armendariz rings. Every reduced ring is M-quasi-Armendariz for any unique product monoid M and any strictly totally ordered monoid $(M,\;{\leq})$. Also $T_4(R)$ is M-quasi-Armendariz when R is reduced and M-Armendariz.

On Semicommutative Modules and Rings

  • Agayev, Nazim;Harmanci, Abdullah
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.21-30
    • /
    • 2007
  • We say a module $M_R$ a semicommutative module if for any $m{\in}M$ and any $a{\in}R$, $ma=0$ implies $mRa=0$. This paper gives various properties of reduced, Armendariz, Baer, Quasi-Baer, p.p. and p.q.-Baer rings to extend to modules. In addition we also prove, for a p.p.-ring R, R is semicommutative iff R is Armendariz. Let R be an abelian ring and $M_R$ be a p.p.-module, then $M_R$ is a semicommutative module iff $M_R$ is an Armendariz module. For any ring R, R is semicommutative iff A(R, ${\alpha}$) is semicommutative. Let R be a reduced ring, it is shown that for number $n{\geq}4$ and $k=[n=2]$, $T^k_n(R)$ is semicommutative ring but $T^{k-1}_n(R)$ is not.

  • PDF

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.