• Title/Summary/Keyword: reasoning

Search Result 2,536, Processing Time 0.036 seconds

Investigation of Present State about Mathematical Reasoning in Secondary School -Focused on Types of Mathematical Reasoning- (학교 현장에서 수학적 추론에 대한 실태 조사 -수학적 추론 유형 중심으로-)

  • 이종희;김선희
    • The Mathematical Education
    • /
    • v.41 no.3
    • /
    • pp.273-289
    • /
    • 2002
  • It tends to be emphasized that mathematics is the important discipline to develop students' mathematical reasoning abilities such as deduction, induction, analogy, and visual reasoning. This study is aimed for investigating the present state about mathematical reasoning in secondary school. We survey teachers' opinions and analyze the results. The results are analyzed by frequency analysis including percentile, t-test, and MANOVA. Results are the following: 1. Teachers recognized mathematics as knowledge constructed by deduction, induction, analogy and visual reasoning, and evaluated their reasoning abilities high. 2. Teachers indicated the importances of reasoning in curriculum, the necessities and the representations, but there are significant difference in practices comparing to the former importances. 3. To evaluate mathematical reasoning, teachers stated that they needed items and rubric for assessment of reasoning. And at present, they are lacked. 4. The hindrances in teaching mathematical reasoning are the lack of method for appliance to mathematics instruction, the unpreparedness of proposals for evaluation method, and the lack of whole teachers' recognition for the importance of mathematical reasoning

  • PDF

Elementary Student's Reasoning Patterns Represented in Constructing Models of 'Food Web and Food Pyramid' ('먹이 그물과 먹이 피라미드' 모형 구성에서 나타난 초등학생의 추론 유형)

  • Han, Moon-Hyun;Kim, Heui-Baik
    • Journal of Korean Elementary Science Education
    • /
    • v.31 no.1
    • /
    • pp.71-83
    • /
    • 2012
  • The purpose of this study was to explore ecological concepts, epistemological reasoning and reasoning processes through constructing 'food web and food pyramid' in ecology. We conducted classes which involved a 'food web and food pyramid' for $6^{th}$ grade students. Each class is constructed of small groups to do modeling and epistemological reasoning through communication. The researcher had videotaped and recorded each class and have made transcription about classes. We analysed patterns of 'food web and food pyramid models' and reasoning processes according to scientific epistemology using transcription data and student outputs. As a result, students represented phenomenon-based reasoning, relation-based reasoning and model-based reasoning in scientific epistemology from their modeling. Students usually did relation-based reasoning and model-based reasoning in food web which explains ecological phenonenon, while they usually did model-based reasoning in food pyramid which expects ecological phenomenon. Student's reasoning can be limited when they have misconception of scientific knowledge and are limited by fragmentary knowledge. This represents that students has to do relation-based reasoning and model-based reasoning is beneficial in their ecological model. It also suggests that students need to define correct-conception related to ecological modeling(food web, food pyramid).

Scientific Reasoning Types and Levels in Science Writings of Elementary School Students (초등학생들의 과학 글쓰기에 나타난 과학적 추론의 유형과 수준)

  • Lim, Ok-Ki;Kim, Hyo-Nam
    • Journal of Korean Elementary Science Education
    • /
    • v.37 no.4
    • /
    • pp.372-390
    • /
    • 2018
  • The purpose of this research is to know the scientific reasoning ability of elementary students. In order to find it, 320 elementary students wrote a report about germination of the 700 or 2,000 years old seeds. Their writings were analyzed by scientific writing analysis frameworks, Scientific Reasoning Types and Scientific Reasoning Level Criteria developed by Lim (2018). Minto Pyramid Principles was used to show statements and relations of statements related to scientific reasoning. This paper showed scientific reasoning statements of elementary students about germination of seeds. The characteristics of scientific reasoning of elementary students were as follows. In the process of logical writing by the types of scientific reasoning, many students showed various characteristics and different levels. In the writings based on inductive reasoning, they did not distinguish between common features and differences of cases, and did not derive the rules based on common features and differences of the cases. In the writings based on deductive reasoning, there were cases where the major premise corresponding to the principle or rule was omitted and only the phenomenon was described, or the rule was presented but not connected with the case. In the writings based on abductive reasoning, the ability to selectively use the background knowledge related to the question situation was not sufficient, and borrowing of similar background knowledge, which was commonly used in other situations, was very rare.

Algebraic Reasoning Abilities of Elementary School Students and Early Algebra Instruction(1) (초등학생의 대수 추론 능력과 조기 대수(Early Algebra) 지도(1))

  • Lee, Hwa Young;Chang, Kyung Yoon
    • School Mathematics
    • /
    • v.14 no.4
    • /
    • pp.445-468
    • /
    • 2012
  • This study is tried in order to link informal arithmetic reasoning to formal algebraic reasoning. In this study, we investigated elementary school student's non-formal algebraic reasoning used in algebraic problem solving. The result of we investigated algebraic reasoning of 839 students from grade 1 to 6 in two schools, Korea, we could recognize that they used various arithmetic reasoning and pre-formal algebraic reasoning which is the other than that is proposed in the text book in word problem solving related to the linear systems of equation. Reasoning strategies were diverse depending on structure of meaning and operational of problems. And we analyzed the cause of failure of reasoning in algebraic problem solving. Especially, 'quantitative reasoning', 'proportional reasoning' are turned into 'non-formal method of substitution' and 'non-formal method of addition and subtraction'. We discussed possibilities that we are able to connect these pre-formal algebraic reasoning to formal algebraic reasoning.

  • PDF

Students' Alternative Conceptions of Plate Boundaries and Their Conception Revision According to Their Reasoning Patterns

  • Park, Su-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.385-398
    • /
    • 2014
  • This study investigated students' alternative conceptions of plate boundaries and their conception revision according to the pattern of students' reasoning. Participants were twenty-two 10th grade high school students. All participants were asked to draw the three types of plate boundaries and to explain their drawings. Nine students participated in the reasoning activity. To this end, a semi-structured interview was conducted during which key questions were asked for the students to individually answer. The key questions used in the reasoning activity were created, by utilizing questions used in the previous studies. The findings revealed that the alternative conceptions of plate boundaries were classified into three levels based on established criteria. Students who attempted a variety of reasoning strategies such as causal reasoning, using an analogy, abductive reasoning, data reconstruction and concept combination, revised their alternative conception to a scientific conception after the reasoning activity. On the other hand, some students could not revise their alternative conceptions because they only conducted an incomplete reasoning strategy. The study also found that they were unable to use other reasoning strategies, either.

Optimazation of Fuzzy Systems by Switching Reasoning Methods Dynamically

  • Smith, Michael H.;Takagi, Hideyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1354-1357
    • /
    • 1993
  • This paper proposes that the best reasoning(i.e. rule evaluation) method which should be used in a fuzzy system significantly depends on the reasoning environment. It is shown that allowing for dynamic switching of reasoning methods leads to better performance, even when only two different reasoning methods are considered. This paper discusses DSFS (Dynamic Switching Fuzzy System) which dynamically switches and finds the best reasoning method (from among 80 different possible reasoning methods) to use depending on the reasoning situation. To overcome the reasoning speed and memory problem of DSFS due to its computational requirements, the DSFS Switching Reasoning Table method is proposed and its higher performance as compared to a conventional fuzzy system is shown. Finally, efforts to obtain general relationships between the characteristics of different reasoning methods and the actual control surface/environment is discussed.

  • PDF

Proportional Reasoning Strategy of Pre-service Elementary Teachers (초등예비교사의 비례추론 과제에 대한 전략 분석)

  • Choi, Eunah
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.4
    • /
    • pp.601-625
    • /
    • 2016
  • In this study, I hoped to reveal the understanding of pre-service elementary teachers about proportional reasoning and the traits of proportional reasoning strategy used by pre-service elementary teachers. The results of this study are as follows. Pre-service elementary teachers should deal with various proportional reasoning tasks and make a conscious effort to analyze proportional reasoning task and investigate various proportional reasoning strategies through teacher education program. It is necessary that pre-service elementary teachers supplement the lacking tasks such as qualitative reasoning and distinction between proportional situation and non-proportional situation. Finally, It is suggested to preform the future research on teachers' errors and mis-conceptions of proportional reasoning.

Exploring Reasoning Patterns of Students' Scientific Thinking, Inquiry Activities in Textbook, and Examination Items

  • Kim, Young-Shin;Kwon, Yong-Ju;Yang, Il-Ho;Chung, Wan-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.23 no.4
    • /
    • pp.309-318
    • /
    • 2003
  • Scientific reasoning is one of the main concerns in current science education. This study have tried to answer on the question whether Korean science education has the potential to help improve of students' ability to think scientifically. Therefore, the present study investigated the relationship between reasoning patterns evident in science textbook and science examination items, and students' scientific reasoning skills across grades in Korea. 1975 subjects (1022 females and 953 males) were administered in the Lawson's Test of Scientific Reasoning skills. Forty seven science textbooks and 240 assessment instrument were analyzed by several scientific reasoning keys. Scientific reasoning patterns were adopted from Lawson's classification which characterized the patterns as the empirical-inductive and the hypothetical-deductive. This study found that reasoning patterns evident in textbook analyses and assessment instrumental items do not evidentce the potential to stimulate the development of students' reasoning skill. In order to improve the students' abilities to think and achieve, higher levels of reasoning must be included in the science textbook and examination. Further, some of scientific reasoning processes, such as generating hypotheses, designing experiments, and logical prediction, were not found in science textbooks and test items in Korean secondary schools. This study also discussed the educational implication of these results and further studies about to develop student's reasoning ability.

The Role of The Prefrontal Lobes in Scientific Reasoning (과학적 추론 능력의 발달에서 전두엽연합령의 역할)

  • Hur, Myoung;Lawson, Anton E.;Kwon, Young-Ju
    • Journal of The Korean Association For Science Education
    • /
    • v.17 no.4
    • /
    • pp.525-540
    • /
    • 1997
  • The present study tested the hypothesis that maturation of the prefrontal lobes is a crucial factor determining the performance of scientific reasoning tasks, Functions of the prefrontal lobes, such as activating relevant information, sequential planning and monitoring, and inhibiting irrelevant information, are related thinking patterns with scientific reasoning. Therefore, we inferred the idea that the prefrontal lobes play an important role in scientific reasoning. To test the hypothesis. the present study investigated a prefrontal lobe patient's task solving procedures in scientific reasoning tasks and the correlation and regression analysis between a test of prefrontal lobe function and two scientific reasoning tasks, The perseverative errors in the Wisconsin Card Sorting Test(WCST) was used as a measure of the prefrontal lobe function, The Melinark Type Task and the Classroom Test of Scientific Reasoning were used as measures of scientific reasoning abilities. Ages and Group Embedded Figure Test were also used as measures of two alternative hypotheses, general maturation and field independency respectively. The prefrontal lobe patient showed a crucial deficiency in solving scientific reasoning tasks. In the tasks, the patient could not used the reasoning of If... and... then... therefore pattern. In correlation study, the perseveration errors of the WCST showed a significantly negative correlation with two scientific reasoning tasks. Multiple regression study also showed that the perseveration errors measured as a function of the prefrontal lobes have more contribution to scientific reasoning ability than contributions of alternative hypotheses. Therefore, the present study supported the hypothesis that prefrontal lobes play a crucial role in scientific reasoning ability, What function of the prefrontal lobes do play crucial role in scientific reasoning? The present study provided an explanation for the question, which inhibiting ability of the prefrontal lobes is responsible for the scientific reasoning ability, in a part at least. That is, perseverative tendency in task-solving procedures causes a deficiency of an ability to inhibit the wrong information to solve a task. The present study provided a possibility of neuropsychological approach in science education research. The present study also showed an importance of the prefrontal lobe development in the performance of scientific reasoning task.

  • PDF

An Analysis of Components of Reasoning Process according to the Levels of Cognitive Demands of the Reasoning Tasks -Focused on the Highschool level Mathematical Sequence- (추론 과제의 인지적 난이도 수준에 따른 추론 과정 구성요소 분석 -고등학교 수준 수열 단원을 중심으로-)

  • Oh, Young-Seok
    • Communications of Mathematical Education
    • /
    • v.33 no.3
    • /
    • pp.395-423
    • /
    • 2019
  • The purpose of the study is to analyze the levels of cognitive demands and components of the reasoning process presented in the mathematical sequence section of three high school mathematics textbooks in order to provide implications for the development of reasoning tasks in the future mathematics textbooks. The results of the study have revealed that most of the reasoning tasks presented in the mathematical sequence section of the three high school mathematics textbooks seemed to require low-level cognitive demands and that low-level cognitive demands reasoning tasks required only a component of one reasoning process. On the other hand, only a portion of the reasoning tasks appeared to require high-level of cognitive demands, and high-level cognitive demands reasoning tasks required various components of reasoning process. Considering the results of the study, it seems to suggest that we need more high-level cognitive demands reasoning tasks to develop high-level cognitive reasoning that would provide students with learning opportunities for various processes of reasoning, and that would provide a deeper understanding of the nature of reasoning.