• Title/Summary/Keyword: receiver autonomous integrity monitor

Search Result 3, Processing Time 0.015 seconds

A Realization of Applicable GPS/INS Fault Detection Algorithm for UAV using Low Grade Processor (저급 프로세서에 적용 가능한 무인기용 GPS/INS 고장검출 알고리즘 구현)

  • Yoo, Jang-Sik;Ahn, Jong-Sun;Sung, Sang-Kyung;Lee, Young-Jae;Chun, Se-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.8
    • /
    • pp.781-789
    • /
    • 2010
  • In the GPS/INS integrated system fault detection, algorithm based on a chi-square distribution is commonly used. In this paper, it has been proposed simplified GPS/INS fault detection algorithm that is combined conventional RAIM (Receiver Autonomous Integrity Monitor) and algorithm based on chi-square distribution for UAV using row-grade processor. It use a fault model to verify the proposed algorithm and produced the result.

Along-Track Position Error Bound Estimation using Kalman Filter-Based RAIM for UAV Geofencing

  • Gihun, Nam;Junsoo, Kim;Dongchan, Min;Jiyun, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.51-58
    • /
    • 2023
  • Geofencing supports unmanned aerial vehicle (UAV) operation by defining stay-in and stay-out regions. National Aeronautics and Space Administration (NASA) has developed a prototype of the geofencing function, SAFEGUARD, which prevents stayout region violation by utilizing position estimates. Thus, SAFEGUARD depends on navigation system performance, and the safety risk associated with the navigation system uncertainty should be considered. This study presents a methodology to compute the safety risk assessment-based along-track position error bound under nominal and Global Navigation Satellite Systems (GNSS) failure conditions. A Kalman filter system using pseudorange measurements as well as pseudorange rate measurements is considered for determining the position uncertainty induced by velocity uncertainty. The worst case pseudorange and pseudorange rate fault-based position error bound under the GNSS failure condition are derived by applying a Receiver Autonomous Integrity Monitor (RAIM). Position error bound simulations are also conducted for different GNSS fault hypotheses and constellation conditions with a GNSS/INS integrated navigation system. The results show that the proposed along-track position error bounds depend on satellite geometries caused by UAV attitude change and are reduced to about 40% of those of the single constellation case when using the dual constellation.

Fault Detection Performance Analysis of GNSS Integrity RAIM (GNSS 무결성을 위한 RAIM 기법의 고장검출 성능 분석)

  • Kim, Ji Hye;Park, Kwan Dong;Kim, Du Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.49-56
    • /
    • 2012
  • Performance analysis on RAIM, which is one of the techniques for monitoring integrity to ensure the reliability of GPS, was conducted in this study. RAIM is such a method which allows its user to monitor integrity in the stand-alone mode. Among the existing RAIM procedures, the representative methods including the RCM (Range Comparison Method), LSRM (Least Square Residual Method), Parity approach and WRAIM (Weighted RAIM) were evaluated, and their performance was analyzed. To validate the performance of the implemented algorithms, fault detection was tried on the clock malfunctioning event of PRN 23 occurred on January 1st, 2004. As a result, it was identified that the LSRM and the WRAIM detected all the faults happened in the event. In the case of RCM, all the states of fault were detected except for the error which occurred as a false alarm at one epoch. Furthermore, simulated biases were added for each satellite to analyze the sensitivity of each algorithm. Consequently, when biases of the 9-13 meters range were simulated for the RCM and LSRM algorithm, all the malfunctions were detected. For the WRAIM method, it could detect range biases greater than 15 meters.