• Title/Summary/Keyword: relative sequence entropy

Search Result 5, Processing Time 0.026 seconds

RELATIVE SEQUENCE ENTROPY PAIRS FOR A MEASURE AND RELATIVE TOPOLOGICAL KRONECKER FACTOR

  • AHN YOUNG-HO;LEE JUNGSEOB;PARK KYEWON KOH
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.4
    • /
    • pp.857-869
    • /
    • 2005
  • Let $(X,\;B,\;{\mu},\;T)$ be a dynamical system and (Y, A, v, S) be a factor. We investigate the relative sequence entropy of a partition of X via the maximal compact extension of (Y, A, v, S). We define relative sequence entropy pairs and using them, we find the relative topological ${\mu}-Kronecker$ factor over (Y, v) which is the maximal topological factor having relative discrete spectrum over (Y, v). We also describe the topological Kronecker factor which is the maximal factor having discrete spectrum for any invariant measure.

Minimum Entropy Deconvolution을 이용한 지하수 상대 재충진양의 시계열 추정법

  • 김태희;이강근
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.574-578
    • /
    • 2003
  • There are so many methods to estimate the groundwater recharge. These methods can be categorized into four groups. First groupis related to the water balance analysis, second group is concerned with baseflow/springflow recession, and third group is interested in some types of tracers; environmental tracers and/or temperature profile. The limitation of these types of methods is that the estimated results of recharge are presented in the form of an average over some time period. Forth group has a little different approach. They use the time series data of hydraulic head and specific yield evaluated from field test, and the results of estimation are described in the sequential form. But their approach has a serious problem. The estimated results in forth typeof methods are generally underestimated because they cannot consider the discharge phase of water table fluctuation coupled with the recharge phase. Ketchum el. at. (2000) proposed calibrated method, considering recharge- and discharge-coupled water table fluctuation. But the dischargeis considered just as the areal average with discharge rate. On the other hand, there are many methods to estimate the source wavelet with observed data set in geophysics/signal processing and geophysical methods are rarely applied to the estimation of groundwater recharge. The purpose this study is the evaluation of the applicability of one of the geophysical method in the estimation of sequential recharge rate. The applied geophysical method is called minimum entropy deconvolution (MED). For this purpose, numerical modeling with linearized Boussinesq equation was applied. Using the synthesized hydraulic head through the numerical modeling, the relative sequenceof recharge is calculated inversely. Estimated results are very concordant with the applied recharge sequence. Cross-correlations between applied recharge sequence and the estimated results are above 0.985 in all study cases. Through the numerical test, the availability of MED in the estimation of the recharge sequence to groundwater was investigated

  • PDF

Improving transformer-based acoustic model performance using sequence discriminative training (Sequence dicriminative training 기법을 사용한 트랜스포머 기반 음향 모델 성능 향상)

  • Lee, Chae-Won;Chang, Joon-Hyuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.335-341
    • /
    • 2022
  • In this paper, we adopt a transformer that shows remarkable performance in natural language processing as an acoustic model of hybrid speech recognition. The transformer acoustic model uses attention structures to process sequential data and shows high performance with low computational cost. This paper proposes a method to improve the performance of transformer AM by applying each of the four algorithms of sequence discriminative training, a weighted finite-state transducer (wFST)-based learning used in the existing DNN-HMM model. In addition, compared to the Cross Entropy (CE) learning method, sequence discriminative method shows 5 % of the relative Word Error Rate (WER).

지하수 함양량 추정시 공간상에서의 자료 sampling 방법에 따른 Minimum Entropy Deconvolution의 적용성에 관한 검토

  • Kim Tae-Hui;Kim Yong-Je;Lee Gang-Geun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.139-142
    • /
    • 2005
  • Kim and Lee(2005) suggested Minimum Entropy Deconvolution(MED) to estimate the temporal sequence of the relative recharge. However this study by Kim and Lee(2005) was just related to the verification of the conceptual approach with MED. In this study, we try to characterize the applicability of MED in the case of spatially heterogeneous recharge (distance from recharge area). Simulated results were recorded with some specific sampling points. Estimated results from this study show higher than 0.8 in cross-correlation with the original recharge sequence.

  • PDF

The Applicability of Minimum Entropy Deconvolution Considering Spatial Distribution of Sampling Points (지하수 함양량 추정시 공간상에서의 자료 Sampling 방법에 따른 Minimum Entropy Deconvolution의 적용성에 관한 검토)

  • Kim Tae-Hee;Kim Yong-Je;Lee Kang-Keun
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.52-58
    • /
    • 2006
  • Kim and Lee (2005) suggested Minimum Entropy Deconvolution (MED) to estimate the temporal sequence of the relative recharge. However this study by Kim and Lee (2005) was just related to the verification of the conceptual approach with MED. In this study, we try to characterize the applicability of MED in the case of spatially heterogeneous recharge (distance from recharge area). Simulated results were recorded with some specific sampling points. Estimated results from this study show higher than 0.8 in cross-correlation with the original recharge sequence. In addition, the physical and mathematical meanings of the applied filter length was also investigated. It was revealed that the length of filter is highly related to the spatial distance between recharge area and the monitoring site, and the apparent shape of hydraulic head change.