• Title/Summary/Keyword: reverse H$\ddot{o}$lder class

Search Result 2, Processing Time 0.027 seconds

Lp ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON THE HEISENBERG GROUP

  • Yu, Liu
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.425-443
    • /
    • 2010
  • We investigate the Schr$\ddot{o}$dinger type operator $H_2\;=\;(-\Delta_{\mathbb{H}^n})^2+V^2$ on the Heisenberg group $\mathbb{H}^n$, where $\Delta_{\mathbb{H}^n}$ is the sublaplacian and the nonnegative potential V belongs to the reverse H$\ddot{o}$lder class $B_q$ for $q\geq\frac{Q}{2}$, where Q is the homogeneous dimension of $\mathbb{H}^n$. We shall establish the estimates of the fundamental solution for the operator $H_2$ and obtain the $L^p$ estimates for the operator $\nabla^4_{\mathbb{H}^n}H^{-1}_2$, where $\nabla_{\mathbb{H}^n}$ is the gradient operator on $\mathbb{H}^n$.

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.