• Title/Summary/Keyword: riming

Search Result 5, Processing Time 0.017 seconds

Impacts of Aerosol Loading on Surface Precipitation from Deep Convective Systems over North Central Mongolia

  • Lkhamjav, Jambajamts;Lee, Hyunho;Jeon, Ye-Lim;Seo, Jaemyeong Mango;Baik, Jong-Jin
    • Asia-Pacific Journal of Atmospheric Sciences
    • /
    • v.54 no.4
    • /
    • pp.587-598
    • /
    • 2018
  • The impacts of aerosol loading on surface precipitation from mid-latitude deep convective systems are examined using a bin microphysics model. For this, a precipitation case over north central Mongolia, which is a high-altitude inland region, on 21 August 2014 is simulated with aerosol number concentrations of 150, 300, 600, 1200, 2400, and $4800cm^{-3}$. The surface precipitation amount slightly decreases with increasing aerosol number concentration in the range of $150-600cm^{-3}$, while it notably increases in the range of $600-4800cm^{-3}$ (22% increase with eightfold aerosol loading). We attempt to explain why the surface precipitation amount increases with increasing aerosol number concentration in the range of $600-4800cm^{-3}$. A higher aerosol number concentration results in more drops of small sizes. More drops of small sizes grow through condensation while being transported upward and some of them freeze, thus increasing the mass content of ice crystals. The increased ice crystal mass content leads to an increase in the mass content of small-sized snow particles largely through deposition, and the increased mass content of small-sized snow particles leads to an increase in the mass content of large-sized snow particles largely through riming. In addition, more drops of small sizes increase the mass content of supercooled drops, which also leads to an increase in the mass content of large-sized snow particles through riming. The increased mass content of large-sized snow particles resulting from these pathways contributes to a larger surface precipitation amount through melting and collision-coalescence.

Grid-based Correlation Localization Method in Mixed Line-of-Sight/Non-Line-of-Sight Environments

  • Wang, Riming;Feng, Jiuchao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.87-107
    • /
    • 2015
  • Considering the localization estimation issue in mixed line-of-sight (LOS)/non-LOS(NLOS) environments based on received signal strength (RSS) measurements in wireless sensor networks, a grid-based correlation method based on the relationship between distance and RSS is proposed in this paper. The Maximum-Likelihood (ML) estimator is appended to further improve the localization accuracy. Furthermore, in order to reduce computation load and enhance performance, an improved recursively version with NLOS mitigation is also proposed. The most advantages of the proposed localization algorithm is that, it does not need any prior knowledge of the propagation model parameters and therefore does not need any offline calibration effort to calibrate the model parameters in harsh environments, which makes it more convenient for rapid implementation in practical applications. The simulation and experimental results evidence that the proposed localization algorithm exhibits good localization performance and flexibilities for different devices.

Quantitative Analysis of Snow Particles Using a Multi-Angle Snowflake Camera in the Yeongdong Region (영동지역에서 눈결정 카메라를 활용한 눈결정의 정량 분석)

  • Kim, Su-Hyun;Ko, Dae-Hong;Seong, Dae-Kyung;Eun, Seung-Hee;Kim, Byung-Gon;Kim, Baek-Jo;Park, Chang-Geun;Cha, Ju-Wan
    • Atmosphere
    • /
    • v.29 no.3
    • /
    • pp.311-324
    • /
    • 2019
  • We employed a Multi-Angle Snowflake Camera (MASC) to quantitatively analyze snow particles at the ground level in the Yeongdong region of Korea. The MASC captures high-resolution photographs of hydrometeors from three angles and simultaneously measures fallspeed. Based on snowflake images of the several episodes in 2017 and 2018, we derived statistics of size, aspect ratio, orientation, complexity, and fallspeed of snow crystals, which generally showed similar characteristics to the previous studies in other regions of the world. Dominant snow crystal habits of January 22, 2018 generated by northerly were melted aggregates when 850 hPa temperature was about $-6{\sim}-8^{\circ}C$. Average fallspeed of snow crystals was $1.0m\;s^{-1}$ though its size gradually increased as temperature decreased. Another snowfall event (March 8, 2018) was driven by the baroclinic instability as accompanied with a deep trough. Snow crystal habits were largely rimed aggregates (complexity ~1.8) and melting particles of dark images. Meanwhile, in the extreme snowfall event whose snow rate was greater than $10cm\;hr^{-1}$ on January 20, 2017, main snow crystals appeared to be heavily rimed particles with relatively smaller size when convective clouds developed vertically up to 9 km in association with tropopause folding. MASC also could successfully measure a decrease in snow crystal size and an increase in riming degree after AgI seeding at Daegwallyeong on March 14, 2017.

Implementation of Improved Ice Particle Collision Efficiency in Takahashi Cloud Model (Takahashi 구름모형에서의 얼음입자 충돌효율 개선)

  • Lee, Hannah;Yum, Seong Soo
    • Atmosphere
    • /
    • v.22 no.1
    • /
    • pp.73-85
    • /
    • 2012
  • The collision efficiency data for collision between graupel or hail particles and cloud drops that take into account the differences of particle density are applied to the Takahashi cloud model. The original setting assumes that graupel or hail collision efficiency is the same as that of the cloud drops of the same volume. The Takahashi cloud model is run with the new collision efficiency data and the results are compared with those with the original. As an initial condition, a thermodynamic profile that can initiate strong convection is provided. Three different CCN concentration values and therefore three initial cloud drop spectra are prescribed that represent maritime (CCN concentration = 300 $cm^{-3}$), continental (1000 $cm^{-3}$) and extreme continental (5000 $cm^{-3}$) air masses to examine the aerosol effects on cloud and precipitation development. Increase of CCN concentration causes cloud drop sizes to decrease and cloud drop concentrations to increase. However, the concentration of ice particles decreases with the increase of CCN concentration because small drops are difficult to freeze. These general trends are well captured by both model runs (one with the new collision efficiency data and the other with the original) but there are significant differences: with the new data, the development of cloud and raindrop formation are delayed by (1) decrease of ice collision efficiency, (2) decrease of latent heat from riming process and (3) decrease of ice crystals generated by ice multiplication. These results indicate that the model run with the original collision efficiency data overestimates precipitation rates.

Effects of Uncertainty in Graupel Terminal Velocity on Cloud Simulation (싸락눈 종단 속도의 불확실성이 구름 모의에 미치는 영향)

  • Lee, Hyunho;Baik, Jong-Jin
    • Atmosphere
    • /
    • v.26 no.3
    • /
    • pp.435-444
    • /
    • 2016
  • In spite of considerable progress in the recent decades, there still remain large uncertainties in numerical cloud models. In this study, effects of uncertainty in terminal velocity of graupel on cloud simulation are investigated. For this, a two-dimensional bin microphysics cloud model is employed, and deep convective clouds are simulated under idealized environmental conditions. In the sensitivity experiments, the terminal velocity of graupel is changed to twice and half the velocity in the control experiment. In the experiment with fast graupel terminal velocity, a large amount of graupel mass is present in the lower layer. On the other hand, in the experiment with slow graupel terminal velocity, almost all graupel mass remains in the upper layer. The graupel size distribution exhibits that as graupel terminal velocity increases, in the lower layer, the number of graupel particles increases and the peak radius in the graupel mass size distribution decreases. In the experiment with fast graupel terminal velocity, the vertical velocity is decreased mainly due to a decrease in riming that leads to a decrease in latent heat release and an increase in evaporative cooling via evaporation, sublimation, and melting that leads to more stable atmosphere. This decrease in vertical velocity causes graupel particles to fall toward the ground easier. By the changes in graupel terminal velocity, the accumulated surface precipitation amount differs up to about two times. This study reveals that the terminal velocity of graupel should be estimated more accurately than it is now.