• Title/Summary/Keyword: roll angle estimation

Search Result 36, Processing Time 0.025 seconds

Estimation Algorithm of Vehicle Roll Angle and Control Strategy of Roll Mitigation Force Distribution (차량 롤 각 추정 알고리즘 및 롤 저감력 분배 제어 전략)

  • Chung, Seunghwan;Lee, Hyeongcheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.633-641
    • /
    • 2015
  • The ROM (roll over mitigation) system is a next-generation suspension system that can improve vehicle-driving stability and ride comfort. Currently, mass-produced safety systems, such as ESC (electronic stability control) and ECS (electronic control suspension), enable measurements of longitudinal and lateral acceleration as well as yaw rate through inertial sensor clusters, but they lack direct measurements of the roll angle. Therefore, in this paper, a roll angle estimation algorithm from ESC system sensors and tire normal force has been proposed. Furthermore, this study presents a method for roll over mitigation force distribution between the front and rear of a ROM system. Performance and reliability of the roll angle estimation and roll over mitigation force distribution were investigated through simulations. The simulation results showed that the proposed control algorithm and strategy are reliable during vehicle rollovers.

A Study on the Performance Analysis of RSC (Roll Stability Control) for Driving Stability of Vehicles (차량 롤 주행안정성 향상을 위한 RSC (Roll Stability Control) 성능 해석에 관한 연구)

  • Kwon, Seong-Jin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.5
    • /
    • pp.257-263
    • /
    • 2022
  • Active stabilizers use signals such as steering angle, yaw rate, and lateral acceleration to vary the roll stiffness of the front and rear suspension depending on the vehicle's driving conditions, and are attracting attention as RSC (Roll Stability Control) system that suppresses roll when turning and improves ride comfort when going straight. Various studies have been conducted in relation to active stabilizer bars and RSC systems. However, accurate modeling of passive stabilizer model and active stabilizer model and vehicle dynamics analysis result verification are insufficient, and performance result analysis related to vehicle roll angle estimation and electric motor control is insufficient. Therefore, in this study, an accurate vehicle dynamics model was constructed by measuring the passive/active stabilizer bar model and component parameters. Based on this, the analysis result with high reliability was derived by comparing the roll angle estimation algorithm based on the lateral acceleration and suspension of the vehicle with the actual vehicle driving test result. In addition, it was intended to accurately analyze the motor torque characteristics and roll reduction effects of the electric motor-driven RSC system.

Roll Angle Estimation of a Rotating Vehicle in a Weak GPS Signal Environment Using Signal Merging Algorithm

  • Im, Hun Cheol;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.135-140
    • /
    • 2017
  • This paper proposes a signal merging algorithm to increase the signal-to-noise ratio (SNR) of a GPS correlator output to estimate the roll angle of a rotating vehicle in a weak GPS signal environment. Rotation Locked Loop (RLL) algorithm is used to estimate a roll angle using the characteristics that the power of the GPS signal measured at the receiver of a rotating vehicle varies periodically. First, delay times are calculated to synchronize GPS signals using satellites' and receiver's positions and the rotation frequency of a vehicle, and then correlator outputs are delayed in time and merged with each other, resulting in the increase of an SNR in a correlator output. Finally, simulations are conducted and the performance of the proposed algorithm is validated.

Roll Angle Estimation of a Rolling Airframe Using a GPS and a Roll Rate Gyro (단일 GPS와 롤각속도계를 이용한 롤 회전 비행체의 롤자세각 추정)

  • Hong, Ju-Hyeon;Kim, Dusik;Ryoo, Chang-Kyung;Lee, Chang-Hun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.2
    • /
    • pp.133-140
    • /
    • 2015
  • In this paper, a roll angle estimation method of a rolling airframe using a low grade GPS and a roll rate gyro is proposed. The strength of the received signal of the GPS antenna attached on the rolling airframe is maximized when the GPS satellite is placed on the plane determined by the x-axis of the rolling airframe and the GPS antenna axis. Under the assumption that the x-axis of the rolling airframe is coincident with its velocity vector, the roll angle of the rolling airframe is calculated from the relative position vector of the satellite to the GPS when the GPS signal strength becomes maximum. The Kalman filter combined with a roll rate gyro is introduced to increase the determination accuracy of the roll angle. The performance of the proposed method is verified via 6-DOF simulations.

Verification of Roll Angle Estimation Performance of Slowly Rolling Guided Munition by Flight Experiment (비행 시험을 통한 저속 회전 유도형 탄약의 롤각 추정 성능 검증)

  • Park, Junwoo;Jung, Wooyoung;Bang, Hyochoong;Kim, Jin-Won;Heo, Junhoe;Pak, Chang-Ho;Seo, Songwon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.9
    • /
    • pp.681-689
    • /
    • 2020
  • This paper presents methods and results of both flight test examining roll angle estimation performance of slowly rolling munition forced to spin in the air, and fabricating a replica of guided munition. Guided munition was deployed from multi rotor type UAV mother ship whose altitude and velocity was conveyed to it as initial state. Flight test scenario is composed of a sequence of munition drop(deployment), munition spin, roll angle estimation and stabilization. Munition was deployed from mother ship at around 200m high with horizontal velocity of 15m/s, and was made spun using internal reaction wheel. Performance analysis on roll angle estimation is provided in comparison with commercial aerospace graded GPS/INS. Moreover, several mechanisms that rotates munition using reaction wheel, and actual product that realizes one of them are introduced.

Estimation of Rotation Center and Rotation Angle for Real-time Image Stabilization of Roll Axis. (실시간 회전영상 안정화를 위한 회전중심 및 회전각도 추정 방법)

  • Cho, Jae-Soo;Kim, Do-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.153-155
    • /
    • 2004
  • This paper proposes a real-time approach on the rotational motion estimation and correction for the roll stabilization of the sight system. This method first estimates a rotation center by the least-mean square algorithm based on the motion vectors of some feature points. And, then, a rotation angle is searched for a best matching block between a reference block image and seccessive input images using MPC(maximum pixel count) matching criterion. Finally, motion correction is performed by the bilinear interpolation technique. Various computer simulations show that the estimation performance is good and the proposed algorithm is a real-time implementable one to the TMS320C6415(500MHz) DSP.

  • PDF

Estimation of thickness variation due to skid mark Using Speedometer (속도계를 이용한 스키드 마크로 인한 두께 변동량 추정)

  • 이영교;조성은;김상우;홍성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.40-40
    • /
    • 2000
  • Generally a RF AGC controls the roll gap using the variation of rolling force caused by the roll eccentricity and the entry thickness of material, but these can not be classified. The Feed- forward AGC method, which controls the next stand roll 9ap by estimation the skid mark of the previous stand output thickness is needed to supplement the shortage of RF AGC. In this paper, an improved filtering method of skid mark which take account of the kinds of materials, the final objective thickness and the roll speed is proposed, In addition, an improved estimation method of control point using the speedometer and looper angle is suggested, Via simulation, the performance improvement of the suggested FF AGC method is verified.

  • PDF

Development of Feed-forward AGC using Adaptive Control Algorithm (적응기법을 이용한 Feed-forward AGC 기술 개발)

  • 홍성철;이영교
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.168-171
    • /
    • 2003
  • Generally RF AGC (Roll Force Automatic Gauge Control) controls the roll gap using the variation of rolling force caused by the roll eccentricity and the entry thickness of material, but RE AGC takes the bad effect of the roll eccentricity. The Feed-forward (FF) AGC method, which controls the next stand roll gap by the estimation of the thickness variation due to skid mark is needed to supplement the shortage of RF AGC. In this paper, an adaptive filtering method which takes account of the kind of material, the final objective thickness and the rolling speed is proposed to predict skid mark thickness variation. In addition, an improved estimation method of control point using a speedometer and looper angle is suggested. Via on line test, the performance improvement of the suggested FF AGC method is verified.

  • PDF

Estimation of Rotational Center and Angle for Image Stabilization (영상 안정화를 위한 회전중심 및 각도 추정기법)

  • Seok, Ho-Dong;Yoo, Jun;Kim, Do-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.7
    • /
    • pp.611-617
    • /
    • 2004
  • This paper presents a simple method of rotational motion estimation and correction for roll axis stabilization of an image. The scheme first computes the rotation center by taking least squares of selected local velocity vectors, and the rotational angle is found from special subset of motion vectors. Roll motion correction is then performed by the nearest neighbor interpolation technique. To show the effectiveness of our approach, the synthetic and real images are evaluated, resulting in better performance than the previous ones.