• 제목/요약/키워드: sarcoplasmic reticulum

검색결과 132건 처리시간 0.023초

산소대사물에 의한 심장근 Sarcoplasmic reticulum의 칼슘운반 억제 기전에 관한연구 (A Study on the Mechanism of Calcium Binding Inhibition of Cardiac Sarcoplasmic Reticulum by Oxygen Free Radicals)

  • 김혜원;정명희;김명석;박찬웅
    • 대한약리학회지
    • /
    • 제21권2호
    • /
    • pp.79-89
    • /
    • 1985
  • 심근 세포의 칼슘 조절에 중요한 역할을 하는 sarcoplasmic reticulum (SR)의 칼슘운반 능력이 허혈 심근에서 현저히 억제됨이 알려져 있다. 이와같은 허혈 심근에서의 SR 칼슘운반승력 저하에 유독성 산소 대사물이 관여할 것으로 생각되고 있으나 그 기전에 관하여는 아직 알려진 바 없다. 본 연구에서는 그 기전의 일단을 규명하기 위하여 산틴 산화효소계에 의하여 발생된 유독성 산소대사물긴 돼지 심실근에서 추출한 sarcoplasmic reticulum의 칼슘흡수 및 막지질 과산화, sulfhydryl group 그리고 단백질 변성에 미치는 영향을 관찰하여 다음과 같은 결과를 얻었다. 1) 산틴 산화 효소계와 반응시킨 sarcopl smic reticulum의 칼슘흡수는 반응시간 경과에 따라 현저히 억제되었다. 2) sarcoplasmic reticulum 막지질 과산화는 산딘 산화 효소계에 의하여 현저히 증가되었다 3) 항산화제 ${\beta}$-phenylenediamine은 막지질 과산화의 증가는 효과적으로 억제하였으나, 칼슘흡수 억제는 부분적으로 회복시켰다. 4) 산틴 산화 효소계에 의하여 SH-group은 현저히 감소되었으며, 항산화제 첨가에 의하여 그 감소가 일부 억제되었다. 5) sarcoplasmic reticulum을 DTNB로 처리하여 SH-group을 산소 대사물에 의한 산화반응으로부터 보호했을 경우 칼슘흡수의 억제가 부분적으로 방지되었다. 6) Sephadex G-200 크로마토그라피 상에서 산틴 산화효소계와 반응시킨 sarcoplasmic reticulum의 단백질분해가 관찰되었다. 7) 단백질의 polymerization은 관찰되지 않았으며, 아울러 polymerization을 억제하는 semicarbazide로 칼슘흡수 감소를 방지하지 못하였다. 이상의 결과에서 유독성 산소대사물에 의한 sarcoplasmic reticulum의 칼슘흡수 억제는 sarcoplasmic reticulum의 막지질 과산화, SH-group의 산화 및 막 반백절의 분해 등으로 초래되는 복합적인 기전으로 추정되었다.

  • PDF

Propranolol이 심근 sarcoplasmic reticulum 및 mitochondria 의 $Ca^{++}$ 조절작용에 미치는 효과에 관한 연구 (Effect of Propranolol on the $Ca^{++}$-regulation of Cardiac Sarcoplasmic Reticulum and Mitochondria)

  • 최수승
    • Journal of Chest Surgery
    • /
    • 제19권2호
    • /
    • pp.197-208
    • /
    • 1986
  • Propranolol is one of clinically useful antiarrhythmic agents and electrophysiologically classified as group II. And the negative inotropic effect which is not related to adrenolytic effect has been demonstrated with high concentration of propranolol. On the other hand, it has been well known that the calcium plays a central role in excitation-contraction coupling process of myocardium and also in electrophysiological changes of cell membrane. Author studies the effect of propranolol on calcium uptake and release in sarcoplasmic reticulum and mitochondria prepared from porcine myocardium to investigate the mechanism of action of propranolol on myocardium. The results are summarized as follow: 1] The maximum Ca++-uptake of sarcoplasmic reticulum is inhibited by propranolol in a dose dependent manner. 2] The release of calcium from sarcoplasmic reticulum is not affected by propranolol but with higher than 1x10-3 M of propranolol, rate of calcium release from sarcoplasmic reticulum is decreased. 3] Propranolol inhibits the maximum uptake and uptake rate of calcium in mitochondria non-competitively. [Ki = 6.21 x 10-4 M] 4] The rate of Na+ induced calcium release from mitochondrion shows a function of [Na+]2 and is inhibited by propranolol with the concentration significantly lower than that affect the calcium uptake in sarcoplasmic reticulum and in mitochondria [Ki = 2.91 x 10-5 M]. These results suggest that propranolol affects the intracellular calcium homeostasis which may considered to be one of the mechanism of action of propranolol on myocardium.

  • PDF

筋小胞體 切片에 미치는 Caffeine의 작용에 관한 연구 (On the Possible Interaction of Caffeine with the Fragmented Sarcoplasmic Reticulum of Rabbit Skeletal Muscle)

  • Ha, Doo-Bong;Kim, Han-Do
    • 한국동물학회지
    • /
    • 제19권4호
    • /
    • pp.161-170
    • /
    • 1976
  • 筋小胞體의 Ca能動輸送은 caffeine에 의하여 阻害되므로 筋小胞體 切片에 대한 caffeine의 작용을 조사한 결과는 다음과 같다. caffeine은 근소포체 표면에 結合하지 않거나 결합하여도 그 결합은 극히 약한 결합으로 생각된다. caffeine은 筋小胞體 표면의 遊離 SH基를 증가시킨다. 따라서 caffeine에 의하여 근소포체 단백질의 표면변화가 일어나서 그 결과 Ca에 대한 輸送能이 低下되는 것으로 생각된다.

  • PDF

Vanadate가 골격근 sarcoplasmic reticulum의 $Ca^{++}-ATPase$$Ca^{++}\;uptake$에 미치는 영향 (Effects of Vanadate on Activity of $Ca^{++}$Activated ATPase and $Ca^{++}$ Uptake of Sarcoplasmic Reticulum in Rat Skeletal Muscle)

  • 주순재;한경희;임중우;강두희
    • The Korean Journal of Physiology
    • /
    • 제20권2호
    • /
    • pp.157-164
    • /
    • 1986
  • Since it has been reported that vanadate inhibits $Ca^{++}-ATPase$ activity without affecting $Ca^{++}$ uptake, this study was undertaken to investigate the effects of vanadate on $Ca^{++}-ATPase$ activity and $Ca^{++}$ uptake in the sarcoplasmic reticulum of rat skeletal muscle. The following results were obtained. 1) $Ca^{++}$ activated ATPase activity of the intact sarcoplasmic reticulum was significantly inhibited when vanadate was added to the incubation medium at concentration greater than $10^{-6}\;M$. However $Mg^{++}$-ATPase activity of the intact SR was not affected by vanadate at concentrations ranging from $10^{-7}\;to\;10^{-4}\;M.$ Similarly, $Ca^{++}-ATPase$ activity in sonicated sarcoplasmic reticulum was significantly reduced by vanadate at a concentration $10^{-7}$ M or higher. 2) The uptake of $Ca^{++}$ by isolated sarcoplasmic reticulum was also inhibited by vanadate under the conditions where the turnover rate of $Ca^{++}-ATPase$ was made to increase. These results suggest that the inhibition of $Ca^{++}$ uptake by vanadate may be correlated with that of $Ca^{++}-ATPase$ if experimental conditions are properly set.

  • PDF

백서(白鼠)에 인삼(人蔘) 투여시(投與時) 심근(心筋) 소포체(小胞體)의 $Ca^{++}-dependent$ ATPase활성(活性)에 미치는 효과(效果) (The Effect of Ginseng on $Ca^{++}-dependent$ ATPase Activity of Sarcoplasmic Reticulum Fragments in Rat Heart)

  • 이영숙;김낙두
    • 생약학회지
    • /
    • 제15권1호
    • /
    • pp.24-29
    • /
    • 1984
  • It was previously reported from our laboratory that the rate of deterioration of contractile force was slower in the heart of the ginseng extract treated rats. It was also found that ginseng may have an ability to sustain the normal function of the heart by sustaining Ca accumulation by sarcoplasmic reticulum. $Ca^{++}-dependent$ ATPase plays the central role in movement of $Ca^{++}$ ion from sarcoplasm into sarcoplasmic reticulum. In this investigation, the fragment of sarcoplasmic reticulum was prepared from rat heart treated with ginseng water extract orally 100mg/kg/day for 7 to 10 days and from normal rat heart. $Ca^{++}-dependent$ APTase activity was estimated by a modified method of Fiske and Subbarow's procedure. Experimental groups were divided into 6 groups, depending on the preincubation time, 5, 30 and 60min. at ${25}^{\circ}C$ and ${37}^{\circ}C$ respectively. In both of the groups of ${25}^{\circ}C$ and ${37}^{\circ}C$, $Ca^{++}-dependent$ ATPase activities of the ginseng treated rat hearts were higher than that of normal hearts. Therefore, it can be concluded that $Ca^{++}-dependent$ ATPase activities in sarcoplasmic reticulum of rat hearts were increased by the treatment with ginseng extract.

  • PDF

Membrane associated Ca2+ buffers in the heart

  • Lee, Duk-Gyu;Michalak, Marek
    • BMB Reports
    • /
    • 제43권3호
    • /
    • pp.151-157
    • /
    • 2010
  • $Ca^{2+}$ is a universal signalling molecule that affects a variety of cellular processes including cardiac development. The majority of intracellular $Ca^{2+}$ is stored in the endoplasmic and sarcoplasmic reticulum of muscle and non-muscle cells. Calreticulin is a well studied $Ca^{2+}$-buffering protein in the endoplasmic reticulum, and calreticulin deficiency is embryonic lethal due to impaired cardiac development. Despite calsequestrin being the most abundant $Ca^{2+}$-buffering protein in the sarcoplasmic reticulum, viability is maintained in embryos without calsequestrin and normal $Ca^{2+}$ release and contractile function is observed. The $Ca^{2+}$ homeostasis regulated by the endoplasmic and sarcoplasmic reticulum is critical for the development and proper function of the heart.

근소포체의 단백질 및 당단백질 조성에 관한 연구 (Studies on the Compositon of Protein and lycoprotein in Sarcopiasmic Reticulum of Skeletal Muscle)

  • 박영철
    • 한국동물학회지
    • /
    • 제33권2호
    • /
    • pp.191-199
    • /
    • 1990
  • 토끼의 골격근에서 근소포체를 순수 분리하여 SDS-polyacrylamide gel전기영동법과 125 I-concanavalin A표지법으로 단백질과 당단백질의 조성을 조사하였다. 전기영동사에 나타난 대표적인 단백질은 $Ca^2$+-AThase, 80 Kd protein,calsequestrin,high affinity calcium binding protein, intrinsic glycoprotein이었으며, 160 Kd protein, 94 Kd protein,38 Kd protein, 34 Kd protein,24 Kd proteins도 존재하였다.특히, 막성계에 있는 heak protein으로 알려져 있는 80 Kd protein은 본 연구를 통해 주로 근소포체의 terminal cisternae에 들어 있음이 확인되었다. 한편 125 I-concanavalin A표지에 의해 전기영동성에 나타난 대표적인 당단백질은 160 Kd glycoprotein, 94 Kd glycoprotein, calsequestrin, intrinsic glycoprotein의 4종이었다. 이 가운데 94 Kd glycoprotein은 94 Kd glucose-regulated protein으로 추정되며, 본 연구를 통해 근소포체에서도 특히 T-tubule에 다량으로 존재함이 밝혀졌다.

  • PDF

Higenamine이 심근 Sarcoplasmic Reticulum의 칼슘운반에 미치는 영향에 관한 연구 (The Effect of Higenamine on the Calcium Transport of Cardiac Sarcoplasmic Reticulum)

  • 김주현;이영균;김혜원;김명석;박찬웅;임정규
    • 대한약리학회지
    • /
    • 제18권2호
    • /
    • pp.79-87
    • /
    • 1982
  • Higenamine(dl-demethylcoclaurine, dl-1-(4-hydroxybenzyl)-6,7-dihydroxy-1,2,3,4-tetrah-ydroisoquinoline hydrochloride), which has recently been isolated from Aconite root by Drs. Kosuge and Yokota, has known to be the main cardiotonic component of the Aconite root. The present study was undertaken to investigate the effects of Higenamine on the calcium binding and release and ATPase activity of fragmented cardiac sarcoplasmic reticulum under in vitro condition. The calcium binding and release of sarcoplasmic reticulum were measured by using the double-beam spectrophotometer and the calcium sensitive dye, murexide. In the presence of $10^{-4}{\sim}5{\times}10^{-3}M$ of Higenamine, the maximal calcium binding and the initial binding rate of porcine cardiac sarcoplasmic reticulum were inhibited dose dependently by up to 43%. However, the calcium release from cardiac sarcoplasmic reticulum, which was loaded with $Ca^{++}(50{\mu}M)$, was stimulated in dose dependent manner. When incubated in the medium of 20 mM Tris-maleate(pH 7.0), 100 mM KCl, 10 mM $MgCl_2,\;0.05mM\;CaCl_2\;and\;0.014{\sim}1\;mM\;Tris-ATP\;at\;30^{\circ}C$ in the presence of Higenamine $(10^{-4}{\sim}5{\times}10^{-3}M)$, both $Ca^{++}-and\;Mg^{++}-ATPase$ of sarcoplasmic reticulum were inhibited non-competitively by Higenamine and values of $K_i$ were 4.896 mM and 6.875 mM respectively. It is suggested from the above findings that the cardiotonic effects of Higenamine might be partially explained by the inhibition of calcium binding and the stimulation of calcium release from the sarcoplasimic reticulum which may increase the free intracellular calcium that is available in the contraction of the cardiac muscle fiber.

  • PDF

The Effect of Ginseng on Heart Contraction and Sarcoplasmic Reticulum Function(II) The Effect of Ginseng on $^{45}Ca^{2+}$ Uptake by Sarcoplasmic Reticulum Fragments of Rat Heart

  • Sung, Baek-Yeon;Kim, Nak-Doo
    • Archives of Pharmacal Research
    • /
    • 제6권1호
    • /
    • pp.69-73
    • /
    • 1983
  • It was reported from our laboratory that the rate of deterioration of the force of contraction was slower in heart from Panax ginseng extract treated rats. Present investigation was designed to elucidate the mechanism of the slow deterioration of contractility of ginseng treated hearts. Therefore, $^{45}Ca^{2+}$ Uptake by sarcoplasmic reticulum (SR) isolated from ginseng treated rate and control rats was studied. Rate weighing 150-250g were administered orally with ginseng ethanol extract (100mg/kg) for 10 days. Cardiac SR was isolated by differential centrifugation and $^{45}Ca^{2+}$ uptake was assessed by the Millipore method. Freshly isolated SR from treated as well as control animals did not show any differences, but after incubation for 30 and 60 min at 37.deg.C, $^{45}Ca^{2+}$ uptake of control animal SR was found to be greatly depressed. The SR of treated animal possessed a greater degree of resistance to incubation. Thus it can be concluded that ginseng may have an ability to sustain the normal function of the heart by sustaining Ca accumulation by SR involved with the excitationcontraction coupling processes.

  • PDF

EFFECT OF GINSENG SAPONIN ON THE VASCULAR SMOOTH MUSCLE

  • Lee Kwang Soo
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1980년도 학술대회지
    • /
    • pp.71-76
    • /
    • 1980
  • Aortic strips were prepared from rabbits, and the tensions were maintained by administration of norepinephrine into the incubation chamber. The application of diol or triol induced relaxation of the aortic strip, as indicated by the decreased aortic tension. Triol, in a concentration of $30\;mg\%\;causes\;approximately\;50\%$ of muscle relaxation, whereas a similar degree of relaxation is induced by $50\;mg\%$ of diol. This indicates that both triol and diol cause relaxation of the aorta, but that triol is about $170\%$ more potent than diol. It is well established that blood-vessel smooth-muscle tone is regulated by the available intracellular $Ca^{++}$ concentration, which in turn is profoundly influenced by interaction of the cellular membrane and sarcoplasmic reticulum in the smooth muscle. Thus, any agent which modifies the smooth-muscle tone is expected to interfere with the $Ca^{++}$ binding or uptake of sarcolemma and sarcoplasmic reticulum. In the following experiments sarcoplasmic reticulum and sarcolemma were prepared from the ventricle of rabbit heart, and the active $Ca^{++}$ uptake by these cellular components was measured employing $Ca^{45}$ in the presence of triol and diol. It was found that the active $Ca^{++}$ uptake in the presence of ATP by sarcoplasmic reticulum was inhibited by both triol and diol. Panaxatriol, in a concentration of $80\;mg\;\%,$ inhibited $Ca^{++}$ uptake by $30\%,$ whereas panaxatriol in the same concentration inhibited uptake by $20\%.$ It is clear that triol is a more potent inhibitor of active $Ca^{++}$ transport in sarcoplasmic reticulum than diol. The $Ca^{++}$ binding of the cellular membrane was also studied employing Ca45 and milipore techniques. It was found that triol in a concentration of $80\;mg\;\%,$ decreased $Ca^{++}$ binding by $29\%.$ Diol in the same concentration decreased the binding by $17\%.$ It is clear that both triol and diol inhibit $Ca^{++}$ binding to the cellular membrane, but triol is approximately $180\%$ more potent than diol.

  • PDF