• Title/Summary/Keyword: seasonal frozen ground

Search Result 13, Processing Time 0.027 seconds

Mechanical Behavior of Buried Pipe Line with Frost Prevention Materials (동상방지재료를 활용한 온도에 따른 매설관 거동 특성에 대한 연구)

  • Kang, Jae-Mo;Kim, Hak-Seung;Kim, Young-Seok;Lee, Jang-Keun;Hong, Sung-Seo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.546-552
    • /
    • 2010
  • Seasonal frozen ground affects structural behavior in South Korea. Frost and heaving of seasonal frozen ground results in the critical damage of roadway, railroad, and buried pipeline. It has been widely used to substitute frost susceptible soils with granular soils. This paper presents experimental investigation on the effectiveness of soil-shredded tire and soil-expanded polystylene (EPS) mixtures to reduce frost depth and force around a buried pipeline. Experimental data such as measured temperature profile and the deformation of buried pipeline were carefully observed and provide the evidence of the effectiveness of soil mixtures.

  • PDF

Optimization of hydraulic section of irrigation canals in cold regions based on a practical model for frost heave

  • Wang, Songhe;Wang, Qinze;An, Peng;Yang, Yugui;Qi, Jilin;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.17 no.2
    • /
    • pp.133-143
    • /
    • 2019
  • An optimal hydraulic section is critical for irrigated water conservancy in seasonal frozen ground due to a large proportion of water leakage, as investigated by in-situ surveys. This is highly correlated with the frost heave of underlain soils in cold season. This paper firstly derived a practical model for frost heave of clayey soils, with temperature dependent thermal indexes incorporating phase change effect. A model test carried out on clay was used to verify the rationality of the model. A novel approach for optimizing the cross-section of irrigation canals in cold regions was suggested with live updated geometry characterized by three unique geometric constraints including slope of canal, ratio of practical flow section to the optimal and lining thickness. Allowable frost heave deformation and tensile stress in canal lining are utilized as standard in computation iterating with geometry updating while the construction cost per unit length is regarded as the eventual target in optimization. A typical section along the Jinghui irrigation canal was selected to be optimized with the above requirements satisfied. Results prove that the optimized hydraulic section exhibits smaller frost heave deformation, lower tensile stress and lower construction cost.

A novel modeling of settlement of foundations in permafrost regions

  • Wang, Songhe;Qi, Jilin;Yu, Fan;Liu, Fengyin
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.225-245
    • /
    • 2016
  • Settlement of foundations in permafrost regions primarily results from three physical and mechanical processes such as thaw consolidation of permafrost layer, creep of warm frozen soils and the additional deformation of seasonal active layer induced by freeze-thaw cycling. This paper firstly establishes theoretical models for the three sources of settlement including a statistical damage model for soils which experience cyclic freeze-thaw, a large strain thaw consolidation theory incorporating a modified Richards' equation and a Drucker-Prager yield criterion, as well as a simple rheological element based creep model for frozen soils. A novel numerical method was proposed for live computation of thaw consolidation, creep and freeze-thaw cycling in corresponding domains which vary with heat budget in frozen ground. It was then numerically implemented in the FISH language on the FLAC platform and verified by freeze-thaw tests on sandy clay. Results indicate that the calculated results agree well with the measured data. Finally a model test carried out on a half embankment in laboratory was modeled.

Analysis of Penetration Depths in Pavement in Korea (포장도로에서의 동결심도 조사분석)

  • Kim, Young-Chin;Hong, Seung-Seo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.475-482
    • /
    • 2005
  • Many public facilities including roadway, railway, and embedded pipe lines in this country have been damaged by the repeated freezing and thawing of the soil during winter and spring every year. However, there are only few research results in field of frozen ground in this country. Also, there are no the formulation of the reasonable equation for frost penetration depths and of the criterion for identifing potentially frost-susceptible soil in design manual of pavement yet. Through this study it is anticipated to asses the frost action problem in roadway, railway, and water suppply lines and to establish the design criterion about pavement in seasonal cold region.

  • PDF

Evaluation on Thermal Performance of Thermosyphon by Numerical Analysis (열사이펀의 열성능 산정을 위한 수치해석 연구)

  • Jang, Changkyu;Choi, Changho;Lee, Jangguen;Lee, Chulho
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.9
    • /
    • pp.57-66
    • /
    • 2014
  • The ground in cold region consists of active and permafrost layers. The active layer at the unstable state may cause ground corrosion and uplift, when the temperature of frozen ground increases due to seasonal changes. The thermosyphon is one of the stabilization methods to maintain the ground stability in the frozen ground. The thermosyphon is a closed two-phase convection device that extracts heat from the ground and discharges it into the atmosphere. In this study, ground freezing experiment using a thermosyphon and simulated ground with the isolation material was conducted to evaluate the thermal performance of the thermosyphon. In order to consider the thermal performance of the thermosyphon, commercial numerical program (TEMP/W) was adopted. Likewise, the thermal performance of thermosyphon and thermal properties of ground were applied in the numerical model. In a series of comparisons with experiment results and numerical study, thermal performance of thermosyphon can be evaluated.

Experimental Investigation of Frost Heaving Susceptibility with Soils from Terra Nova Bay in Eastern Antarctica (동남극 테라노바만 흙 시료의 동상특성에 관한 실험적 연구)

  • Hong, Seungseo;Park, Junghee;Lee, Jongsub;Lee, Jangguen;Kang, Jaemo;Kim, Youngseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.5-16
    • /
    • 2012
  • The second scientific antarctic station of South Korea is under construction at Terra Nova Bay located in eastern Antarctica. Ground condition in the Antarctica is frozen in general, but there are seasonal frozen grounds with active layers sporadically. When the active layer is frozen, frost heaving occurs that might cause the differential movement of frozen ground and the failure of structures. Therefore, it is necessary to determine the frost heaving susceptibility of soils at Terra Nova Bay before starting antarctic station construction. This study presents experimental investigation of the frost heaving susceptibility of soil samples with variation of particle sizes and unfrozen water contents. The soil samples were taken from five different locations at Terra Nova Bay and physical properties, unfrozen water content, and frost heaving tests were performed. For the frost heaving tests, soil specimens were frozen with constant freezing temperatures at the top and with drainage at the bottom in order to stimulate the frost heaving. The frost heaving tests provide volume expansion, volumetric strain, and heaving rate which can be used to analyze the relationship between the frost heaving vs. particle size and the frost heaving vs. unfrozen water content. Experimental results show that the more the fine contents exist in soils, the more frost heaving occurs. In addition, the frost heaving depends on unfrozen water content. Experimental data can be used to evaluate the frost heaving susceptibility of soils at the future construction site in the Antarctica.

Evaluation of Horizontal Force on Pile Shaft Surrounded by Vertical PET Aggregate Layer for Fluid Machinery Structure Installation in Cold Region's Plant (동토 플랜트 유체기계 구조물 설치를 위한 PET 골재적용 말뚝의 주면작용 수평력 평가)

  • Ji, Subin;Jang, Sung Min;Hwang, Soon Gap;Lee, Kicheol;Kim, Dongwook
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.3
    • /
    • pp.43-47
    • /
    • 2016
  • Pile foundations constructed on extremely cold regions cause serviceability problems of superstructures from repeated actions of ground freezing and thawing. Oil sand module plants are mainly constructed on seasonal frozen ground. Due to the freezing and thawing actions of grounds, vertical movements of piles have been observed. To solve these erratic pile movement problems, thin vertical layer of PET aggregates is installed around the pile shaft to prevent potential unfavorable pile movements. There is no known method to calculate "thin PET aggregate layer" -surrounded pile shaft resistance (capacity) against vertical loads; therefore, this experimental research is conducted. Specifically, in this study, horizontal (normal) pressures on pile shaft were assessed varying PET aggregate layer thickness based on the experiment.

Variationsin Air and Ground Temperatures During a Frozen Season in the Subalpine Zone of Mt. Halla (한라산 아고산대의 동결기 기온 및 지온변화)

  • Kim, Taeho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.3
    • /
    • pp.95-107
    • /
    • 2013
  • In order to examine the temperature regime responsible for periglacial processes, air and ground temperatures were monitored from October 2010 to May 2011 at a subalpine bare patch (1,710m asl) of Mt. Halla. Four thermistor sensor probes were installed at 55 cm above a ground surface and depths of 2 cm, 10 cm, and 20 cm, respectively. A mean air temperature is $-0.1^{\circ}C$, while mean ground temperatures are $1.8^{\circ}C$ at 2 cm, $2.6^{\circ}C$ at 10 cm and $3.2^{\circ}C$ at 20 cm deep. A mean monthly ground temperature at 2 cm deep demonstrates below $0^{\circ}C$ successively from January to March, while those at 10 cm and 20 cm deep show no sub-zero temperature. A total of 72 freeze-thaw cycle was observed in air temperature. However, the numbers in ground temperature reduced into 17 at 2 cm, 8 at 10 cm, and 3 at 20 cm deep. The cycles of air temperature and ground temperature at 2 cm deep mostly fluctuated diurnally, while those of ground temperature at 10 cm and 20 cm deep exhibited a several-daily oscillation. Snow cover over 55 cm high remained from January to early April, and it seemed to disappear completely on April 16. A seasonal frost of at least 2 cm thick was formed on late December and the isotherm of $0^{\circ}C$ descended slowly into 10 cm deep on late March to early April due to the insulating snow cover. It showed the maximum freezing depth of 20 cm on April 7 to 14 and then thawed rapidly so that the frozen ground did not longer after April 17. Periglacial processes are predominant during a freezing period than a thawing period when the ground surface is still covered with snow. The periglacial mass movement in the subalpine zone of Mt. Halla is mainly generated by frost creep in terms of the occurrence depth of diurnal freeze-thaw cycle and the maximum freezing depth of ground.

Development of Prediction Model of Frost Penetration Depth on Pavement in Korea (포장도로의 실측값을 활용한 한국형 동결깊이 예측모델 개발)

  • Hong, Seung-Seo;Kim, Young-Seok;Kim, Hak-Seung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.3
    • /
    • pp.47-56
    • /
    • 2010
  • Korea is known to have seasonal frozen ground during a winter season due to climatic and ground conditions. Temperatures below $0^{\circ}C$ cause pavement failure by frost heaving and thaw settlement. A frost protection layer has been constructed in pavements to avoid damage caused by frost action. Anti-frost design methods in Korea have been adopted, which is established in U.S. and Japan. However the characteristics of soils in Korea are different and there are no reasonable modifications to accommodate these characteristics. Therefore, adequate pavement design procedures including seasonal frost action, as well as construction and maintenance practices are required. In this paper, the frost penetration depths along national roads in Korea are presented based on field measurement over several years (1991~2010). The frost penetration depths are analyzed with respect to the Provinces of Korea and sunny/shaded areas.

  • PDF

Frost Heave Force of Ground and Countermeasure for Damage of Structures (지반의 동상력과 구조물의 피해대책)

  • Rui, Da-Hu;Teruyuki, Suzuki;Kim, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.43-51
    • /
    • 2007
  • Frost action may cause extensive damage to building, structures, roads, railways and utility lines in seasonal frost. The research about frost heave of natural ground has been considerably performed. In late years various structures have become complicated with the development of social infrastructure maintenance. Therefore countermeasure to frost heave becomes a matter of great importance from a new viewpoint. This study was aimed at catching natural ground frost heaving force quantitatively. Frost heaving forces on circular steel plates which were set on ground surface were measured in field test. The frost heaving forces arise at freezing front propagates to the structures through frozen soil layer. Besides, a full scale model of multi-anchored retaining wall was installed in field, and the freezing lines, frost heave pressure to act on a wall block, and so on were measured. Finally, the position and shape of frost line were estimated by using numerical simulation and a method to determine replacement range was suggested with soil properties and weather data.