• Title/Summary/Keyword: selfadjoint operators

Search Result 7, Processing Time 0.018 seconds

On Normal Products of Selfadjoint Operators

  • Jung, Il Bong;Mortad, Mohammed Hichem;Stochel, Jan
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.457-471
    • /
    • 2017
  • A necessary and sufficient condition for the product AB of a selfadjoint operator A and a bounded selfadjoint operator B to be normal is given. Various properties of the factors of the unitary polar decompositions of A and B are obtained in the case when the product AB is normal. A block operator model for pairs (A, B) of selfadjoint operators such that B is bounded and AB is normal is established. The case when both operators A and B are bounded is discussed. In addition, the example due to Rehder is reexamined from this point of view.

Comparative Analysis of Spectral Theory of Second Order Difference and Differential Operators with Unbounded Odd Coefficient

  • Nyamwala, Fredrick Oluoch;Ambogo, David Otieno;Ngala, Joyce Mukhwana
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.2
    • /
    • pp.297-305
    • /
    • 2020
  • We show that selfadjoint operator extensions of minimal second order difference operators have only discrete spectrum when the odd order coefficient is unbounded but grows or decays according to specific conditions. Selfadjoint operator extensions of minimal differential operator under similar growth and decay conditions on the coefficients have a absolutely continuous spectrum of multiplicity one.

INEQUALITIES FOR THE RIEMANN-STIELTJES INTEGRAL OF PRODUCT INTEGRATORS WITH APPLICATIONS

  • Dragomir, Silvestru Sever
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.791-815
    • /
    • 2014
  • We show amongst other that if $f,g:[a,b]{\rightarrow}\mathbb{C}$ are two functions of bounded variation and such that the Riemann-Stieltjes integral $\int_a^bf(t)dg(t)$ exists, then for any continuous functions $h:[a,b]{\rightarrow}\mathbb{C}$, the Riemann-Stieltjes integral $\int_{a}^{b}h(t)d(f(t)g(t))$ exists and $${\int}_a^bh(t)d(f(t)g(t))={\int}_a^bh(t)f(t)d(g(t))+{\int}_a^bh(t)g(t)d(f(t))$$. Using this identity we then provide sharp upper bounds for the quantity $$\|\int_a^bh(t)d(f(t)g(t))\|$$ and apply them for trapezoid and Ostrowski type inequalities. Some applications for continuous functions of selfadjoint operators on complex Hilbert spaces are given as well.

NORM CONVERGENCE OF THE LIE-TROTTER-KATO PRODUCT FORMULA AND IMAGINARY-TIME PATH INTEGRAL

  • Ichinose, Takashi
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.337-348
    • /
    • 2001
  • The unitary Lie-Trotter-Kato product formula gives in a simplest way a meaning to the Feynman path integral for the Schroding-er equation. In this note we want to survey some of recent results on the norm convergence of the selfadjoint Lie-Trotter Kato product formula for the Schrodinger operator -1/2Δ + V(x) and for the sum of two selfadjoint operators A and B. As one of the applications, a remark is mentioned about an approximation therewith to the fundamental solution for the imaginary-time Schrodinger equation.

  • PDF

SOME TRACE INEQUALITIES FOR CONVEX FUNCTIONS OF SELFADJOINT OPERATORS IN HILBERT SPACES

  • Dragomir, Silvestru Sever
    • Korean Journal of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.273-296
    • /
    • 2016
  • Some new trace inequalities for convex functions of self-adjoint operators in Hilbert spaces are provided. The superadditivity and monotonicity of some associated functionals are investigated. Some trace inequalities for matrices are also derived. Examples for the operator power and logarithm are presented as well.

ON THE APPROXIMATION BY REGULAR POTENTIALS OF SCHRÖDINGER OPERATORS WITH POINT INTERACTIONS

  • Galtbayar, Artbazar;Yajima, Kenji
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.2
    • /
    • pp.429-450
    • /
    • 2020
  • We prove that wave operators for Schrödinger operators with multi-center local point interactions are scaling limits of the ones for Schrödinger operators with regular potentials. We simultaneously present a proof of the corresponding well known result for the resolvent which substantially simplifies the one by Albeverio et al.

INEQUALITIES FOR QUANTUM f-DIVERGENCE OF CONVEX FUNCTIONS AND MATRICES

  • Dragomir, Silvestru Sever
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.349-371
    • /
    • 2018
  • Some inequalities for quantum f-divergence of matrices are obtained. It is shown that for normalised convex functions it is nonnegative. Some upper bounds for quantum f-divergence in terms of variational and ${\chi}^2-distance$ are provided. Applications for some classes of divergence measures such as Umegaki and Tsallis relative entropies are also given.