• Title/Summary/Keyword: spectral theory

Search Result 247, Processing Time 0.029 seconds

ALGEBRAIC SPECTRAL SUBSPACES OF OPERATORS WITH FINITE ASCENT

  • Han, Hyuk
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.677-686
    • /
    • 2016
  • Algebraic spectral subspaces were introduced by Johnson and Sinclair via a transnite sequence of spaces. Laursen simplified the definition of algebraic spectral subspace. Algebraic spectral subspaces are useful in automatic continuity theory of intertwining linear operators on Banach spaces. In this paper, we characterize algebraic spectral subspaces of operators with finite ascent. From this characterization we show that if T is a generalized scalar operator, then T has finite ascent.

ON PREHERMITIAN OPERATORS

  • YOO JONG-KWANG;HAN HYUK
    • Communications of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.53-64
    • /
    • 2006
  • In this paper, we are concerned with the algebraic representation of the quasi-nilpotent part for prehermitian operators on Banach spaces. The quasi-nilpotent part of an operator plays a significant role in the spectral theory and Fredholm theory of operators on Banach spaces. Properties of the quasi-nilpotent part are investigated and an application is given to totally paranormal and prehermitian operators.

Dynamic Modeling and Analysis of the Composite Beams with a PZT Layer (PZT층을 갖는 복합재 보의 동역학 모델링 및 해석)

  • Kim, Dae-Hwan;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.314-316
    • /
    • 2011
  • This paper develops a spectral element model for the composite beams with a surface-bonded piezoelectric layer from the governing equations of motion. The governing equations of motion are derived from Hamilton's principle by applying the Bernoulli-Euler beam theory for the bending vibration and the elementary rod theory for the longitudinal vibration of the composite beams. For the PZT layer, the Bernoulli-Euler beam theory and linear piezoelectricity theory are applied. The high accuracy of the present spectral element model is evaluated through the numerical examples by comparing with the finite element analysis results.

  • PDF

On a clary theorem

  • Ko, Eungil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.1
    • /
    • pp.29-33
    • /
    • 1996
  • In this paper we shall generalize a Clary theorem by using the local spectral theory; If $ T \in L(H)$ has property $(\beta)$ and A is any operator such that $A \prec T$, then $\sigma(T) \subseteq \sigma(A)$.

  • PDF

Analysis of Lamb wave propagation on a plate using the spectral element method (스펙트럼 요소법을 이용한 판 구조물의 램파 전달 해석)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Choi, Kwang-Kyu;Park, Hyun-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.71-81
    • /
    • 2008
  • This paper proposes a spectral element which can represent dynamic responses in high frequency domain such as Lamb waves on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by piezoelectric layer (PZT layer) bonded on a base plate. In the two layer beam model, a PZT layer is assumed to be rigidly bonded on a base beam. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with electro mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are formulated through equations of motions converted into frequency domain. A detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through comparison results with the conventional 2-D FEM and the previously developed spectral elements.

  • PDF

Morava K- theory of the double loop spaces of quaternionic stieffel manifolds

  • Park, Younggi
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.3
    • /
    • pp.359-370
    • /
    • 1997
  • In this paper we get the Morava K-theory of the double loop spaces of quarternionic Stiefel manifolds for an odd prime p by computing the Atiyah - Hirzebruch spectral sequence. We also get the homology with Z/(p) coefficients and analyze p torsion in the homology with Z coefficients.

  • PDF

Metric and Spectral Geometric Means on Symmetric Cones

  • Lee, Hosoo;Lim, Yongdo
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.1
    • /
    • pp.133-150
    • /
    • 2007
  • In a development of efficient primal-dual interior-points algorithms for self-scaled convex programming problems, one of the important properties of such cones is the existence and uniqueness of "scaling points". In this paper through the identification of scaling points with the notion of "(metric) geometric means" on symmetric cones, we extend several well-known matrix inequalities (the classical L$\ddot{o}$wner-Heinz inequality, Ando inequality, Jensen inequality, Furuta inequality) to symmetric cones. We also develop a theory of spectral geometric means on symmetric cones which has recently appeared in matrix theory and in the linear monotone complementarity problem for domains associated to symmetric cones. We derive Nesterov-Todd inequality using the spectral property of spectral geometric means on symmetric cones.

  • PDF

Spectral Element Formulation for Analysis of Lamb Wave Propagation on a Plate Induced by Surface Bonded PZT Transducers (표면 부착형 PZT소자에 의해 유발된 판 구조물의 램파 전달 해석을 위한 스펙트럼 요소 정식화)

  • Lim, Ki-Lyong;Kim, Eun-Jin;Kang, Joo-Sung;Park, Hyun-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1157-1169
    • /
    • 2008
  • This paper presents spectral element formulation which approximates Lamb wave propagation by PZT transducers bonded on a thin plate. A two layer beam model under 2-D plane strain condition is introduced to simulate high-frequency dynamic responses induced by a piezoelectric (PZT) layer rigidly bonded on a base plate. Mindlin-Herrmann and Timoshenko beam theories are employed to represent the first symmetric and anti-symmetric Lamb wave modes on a base plate, respectively. The Euler-Bernoulli beam theory and 1-D linear piezoelectricity are used to model the electro-mechanical behavior of a PZT layer. The equations of motions of a two layer beam model are derived through Hamilton's principle. The necessary boundary conditions associated with the electro-mechanical properties of a PZT layer are formulated in the context of dual functions of a PZT layer as an actuator and a sensor. General spectral shape functions of response field and the associated boundary conditions are obtained through equations of motions converted into frequency domain. Detailed spectrum element formulation for composing the dynamic stiffness matrix of a two layer beam model is presented as well. The validity of the proposed spectral element is demonstrated through numerical examples.

Evolutionary game theory-based power control for uplink NOMA

  • Riaz, Sidra;Kim, Jihwan;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2697-2710
    • /
    • 2018
  • Owing to the development of Internet of Things (IoT), the fifth-generation (5G) wireless communication is going to foresee a substantial increase of mobile traffic demand. Energy efficiency and spectral efficiency are the challenges in a 5G network. Non-orthogonal multiple access (NOMA) is a promising technique to increase the system efficiency by adaptive power control (PC) in a 5G network. This paper proposes an efficient PC scheme based on evolutionary game theory (EGT) model for uplink power-domain NOMA system. The proposed PC scheme allows users to adaptively adjusts their transmit power level in order to improve their payoffs or throughput which results in an increase of the system efficiency. In order to separate the user signals, a successive interference cancellation (SIC) receiver installed at the base station (BS) site. The simulation results demonstrate that the proposed EGT-based PC scheme outperforms the traditional game theory-based PC schemes and orthogonal multiple access (OMA) in terms of energy efficiency and spectral efficiency.

ON THE INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH A NONLINEAR SPECTRAL PARAMETER IN THE BOUNDARY CONDITION

  • Mamedov, Khanlar R.
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1243-1254
    • /
    • 2009
  • The inverse scattering problem is investigated for some second order differential equation with a nonlinear spectral parameter in the boundary condition on the half line [0, $\infty$). In the present paper the coefficient of spectral parameter is not a pure imaginary number and the boundary value problem is not selfadjoint. We define the scattering data of the problem, derive the main integral equation and show that the potential is uniquely recovered.