• 제목/요약/키워드: standard cutting parameter

검색결과 7건 처리시간 0.023초

다구찌 방법을 이용한 폴리아세탈 수지 절삭조건 결정 (An Optimal Parameter Design of Polyacetal Resin Cutting Experiment Using Taguchi Method)

  • 조용욱;박명규;김희남
    • 대한안전경영과학회지
    • /
    • 제3권1호
    • /
    • pp.117-125
    • /
    • 2001
  • Polyacetal resin is usually used to make molds, but it is difficult to achieve dimension accuracy during molding. Therefore it is usually necessary to cut the polyacetal resin after a molding process. Polyacetal resin is easily machining by standard machine tool. Acetal is also a thermal stable material which can be totted without coolant Another concern about the use of polyacetal resin is that it absorbs water easily, which also results in problems with dimension accuracy Therefore, in this study, the cutting resistance of water-absorbed polyacetal resin and its surface roughness after cutting in order to achieve the highest degree of accuracy in the cutting of polyacetal resin were investigated. Also, The Robust Design method uses a mathematical tool called orthogonal arrays to study a large number of decision variables with a small number of experiments. It also uses a new measure of quality, called signal-to-noise (S/N) ratio, to predict the quality from the customer's perspective. Thus, we have taken Taguchi's parameter design approach, specifically orthogonal array, and determined the optimal levels of the selected variables through analysis of the experimental results using S/N ratio.

  • PDF

절삭조건과 절삭력 파라메타를 이용한 공구상태 진단에 관한 연구(II) -의사결정 - (A Study on the Diagnosis of Cutting Tool States Using Cutting Conditions and Cutting Force Parameters(II) -Decision Making-)

  • 정진용;서남섭
    • 한국정밀공학회지
    • /
    • 제15권4호
    • /
    • pp.105-110
    • /
    • 1998
  • In this study, statistical and neural network methods were used to recognize the cutting tool states. This system employed the tool dynamometer and cutting force signals which are processed from the tool dynamometer sensor using linear discriminent function. To learn the necessary input/output mapping for turning operation diagnosis, the weights and thresholds of the neural network were adjusted according to the error back propagation method during off-line training. The cutting conditions, cutting force ratios and statistical values(standard deviation, coefficient of variation) attained from the cutting force signals were used as the inputs to the neural network. Through the suggested neural network a cutting tool states may be successfully diagnosed.

  • PDF

BIM 기반 비정형 건축물 패널화 모델 생성 방법에 관한 연구 (BIM-Based Generation of Free-form Building Panelization Model)

  • 김양길;이윤구;함남혁;김재준
    • 한국BIM학회 논문집
    • /
    • 제12권4호
    • /
    • pp.19-31
    • /
    • 2022
  • With the development of 3D-based CAD (Computer Aided Design), attempts at freeform building design have expanded to small and medium-sized buildings in Korea. However, a standardized system for continuous utilization of shape data and BIM conversion process implemented with 3D-based NURBS is still immature. Without accurate review and management throughout the Freeform building project, interference between members occurs and the cost of the project increases. This is very detrimental to the project. To solve this problem, we proposed a continuous utilization process of 3D shape information based on BIM parameters. Our process includes algorithms such as Auto Split, Panel Optimization, Excel extraction based on shape information, BIM modeling through Adaptive Component, and BIM model utilization method using ID Code. The optimal cutting reference point was calculated and the optimal material specification was derived using the Panel Optimization algorithm. With the Adaptive Component design methodology, a BIM model conforming to the standard cross-section details and specifications was uniformly established. The automatic BIM conversion algorithm of shape data through Excel extraction created a BIM model without omission of data based on the optimized panel cutting reference point and cutting line. Finally, we analyzed how to use the BIM model built for automatic conversion. As a result of the analysis, in addition to the BIM utilization plan in the general construction stage such as visualization, interference review, quantity calculation, and construction simulation, an individual management plan for the unit panel was derived through ID data input. This study suggested an improvement process by linking the existing research on atypical panel optimization and the study of parameter-based BIM information management method. And it showed that it can solve the problems of existing Freeform building project.

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • 제23권1호
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

우기시 비탈면 안전율 변화 인자의 영향에 대한 수치해석적 비교연구 (Numerical Analysis and Comparison of the Influence of Safety Factor Variations in Slope Stability During Rainy Season)

  • 송평현;백용;유병옥;황영철
    • 한국지반공학회논문집
    • /
    • 제30권10호
    • /
    • pp.45-54
    • /
    • 2014
  • 비탈면 붕괴를 최소화 하기 위하여 조사, 설계, 해석, 대책방안 등의 연구가 많이 수행되고 있다. 그러나, 최근 태풍 및 집중호우로 인하여 비탈면 및 자연 사면의 산사태 발생빈도는 줄지 않고 있다. 단순한 설계 기준의 강화만으로는 적절한 대책을 마련하기 어려운 실정이다. 따라서, 지반과 강우를 고려한 최적의 조건에서 설계 및 안정해석을 실시하여야 한다. 본 연구는 비탈면 해석시 강우 및 해석조건에 대하여 각 변수의 영향을 살펴보고자 안전율의 변화를 다각도로 검토한 것이다. 연구방법으로는 비탈면 안정에 가장 민감하게 반응한다고 판단되는 강우조건과 지반조건을 선정하였고, 각각의 조건변수를 변화시켜가면서 수치해석적 검토를 수행하였다. 강우특성으로는 국내의 확률강우특성을 기반으로 해석을 수행하였으며 지반조건으로는 불포화토를 대상으로 검토를 실시하였다. 연구결과, 지역별 강우특성과 불포화토의 매개변수 적용이 비탈면 안전율 변화에 민감하게 반응하는 것으로 나타났다. 따라서, 설계시 입력변수에 대한 충분한 검토가 선행되어야 할 것이다.

기계적 충격기술을 적용한 멥쌀 경단의 규격 표준화 및 품질특성에 대한 연구 (Study on the Standardization and Physicochemical Property for Non-waxy Gyungdan Adapted with Mechanically Impacting Technology)

  • 한서영;박혜영;신동선;김경미;한귀정
    • 한국식품조리과학회지
    • /
    • 제29권1호
    • /
    • pp.29-36
    • /
    • 2013
  • The present study was conducted to supply more scientific information for standardization of preparation method of Gyungdan and to determine the standard for manufacturing procedure adapted with mechanically impacting technology (MIT) for mass production. The optimum preparation condition for non-waxy Gyungdan adapted with MIT was 35% of water, 0.5% of wheat flour (w/w of soaked rice), and mechanically impacting for 10 min at 450 rpm. In the present study, standardization of manufacturing procedure for merchandizing of Gyungdan was established with width, weight, and height. Average of Gyungdan adapted with MIT at 90 rpm (stuffing speed) and 46.58 Herz (cutting speed) is 18.3 g of weight, 28.4 mm of height, and 32.4 mm of width. Hardness, as a main parameter of texture profile, of Gyungdan was maintained lower than 100 g up to 3 days at the storage of $20^{\circ}C$ and up to 70 days at the storage of $-20^{\circ}C$. And, it was performed to develop rice cake as meal-replacement adapted with MIT and sub-ingredients such as strawberry, pumpkin, and mugwort. Gyungdan prepared under controlling manufacturing condition of MIT was supplemented with 0-1.6% of sub-ingredients, respectively. In sensory tests, the best substitute ratios of strawberry, pumpkin, and mugwort were 1.6%, 0.8%, and 1.6%, respectively. With the results above, not-harden Gyungdan supplemented with sub-ingredients and various stuffs can be expected to application for wheat-substitute meal-replacement.