• Title/Summary/Keyword: strictly convex

Search Result 54, Processing Time 0.019 seconds

AN EXTENSION OF SCHNEIDER'S CHARACTERIZATION THEOREM FOR ELLIPSOIDS

  • Dong-Soo Kim;Young Ho Kim
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.905-913
    • /
    • 2023
  • Suppose that M is a strictly convex hypersurface in the (n + 1)-dimensional Euclidean space 𝔼n+1 with the origin o in its convex side and with the outward unit normal N. For a fixed point p ∈ M and a positive constant t, we put 𝚽t the hyperplane parallel to the tangent hyperplane 𝚽 at p and passing through the point q = p - tN(p). We consider the region cut from M by the parallel hyperplane 𝚽t, and denote by Ip(t) the (n + 1)-dimensional volume of the convex hull of the region and the origin o. Then Schneider's characterization theorem for ellipsoids states that among centrally symmetric, strictly convex and closed surfaces in the 3-dimensional Euclidean space 𝔼3, the ellipsoids are the only ones satisfying Ip(t) = 𝜙(p)t, where 𝜙 is a function defined on M. Recently, the characterization theorem was extended to centrally symmetric, strictly convex and closed hypersurfaces in 𝔼n+1 satisfying for a constant 𝛽, Ip(t) = 𝜙(p)t𝛽. In this paper, we study the volume Ip(t) of a strictly convex and complete hypersurface in 𝔼n+1 with the origin o in its convex side. As a result, first of all we extend the characterization theorem to strictly convex and closed (not necessarily centrally symmetric) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽. After that we generalize the characterization theorem to strictly convex and complete (not necessarily closed) hypersurfaces in 𝔼n+1 satisfying Ip(t) = 𝜙(p)t𝛽.

AREA OF TRIANGLES ASSOCIATED WITH A STRICTLY LOCALLY CONVEX CURVE

  • Kim, Dong-Soo;Kim, Dong Seo;Bae, Hyun Seon;Kim, Hye-Jung
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.41-52
    • /
    • 2015
  • It is well known that the area U of the triangle formed by three tangents to a parabola X is half of the area T of the triangle formed by joining their points of contact. Recently, it was proved that this property is a characteristic one of parabolas. That is, among strictly locally convex $C^{(3)}$ curves in the plane $\mathbb{R}^2$ parabolas are the only ones satisfying the above area property. In this article, we study strictly locally convex curves in the plane $\mathbb{R}^2$. As a result, generalizing the above mentioned characterization theorem for parabolas we present some conditions which are necessary and sufficient for a strictly locally convex $C^{(3)}$ curve in the plane to be an open part of a parabola.

Areas associated with a Strictly Locally Convex Curve

  • Kim, Dong-Soo;Kim, Dong Seo;Kim, Young Ho;Bae, Hyun Seon
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.2
    • /
    • pp.583-595
    • /
    • 2016
  • Archimedes showed that for a point P on a parabola X and a chord AB of X parallel to the tangent of X at P, the area S of the region bounded by the parabola X and chord AB is four thirds of the area T of triangle ${\Delta}ABP$. It is well known that the area U formed by three tangents to a parabola is half of the area T of the triangle formed by joining their points of contact. Recently, the first and third authors of the present paper and others proved that among strictly locally convex curves in the plane ${\mathbb{R}}^2$, these two properties are characteristic ones of parabolas. In this article, in order to generalize the above mentioned property $S={\frac{4}{3}}T$ for parabolas we study strictly locally convex curves in the plane ${\mathbb{R}}^2$ satisfying $S={\lambda}T+{\nu}U$, where ${\lambda}$ and ${\nu}$ are some functions on the curves. As a result, we present two conditions which are necessary and sufficient for a strictly locally convex curve in the plane to be an open arc of a parabola.

CHORD AND AREA PROPERTIES OF STRICTLY CONVEX CURVES

  • Kim, Dong-Soo;Kim, Incheon
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.4
    • /
    • pp.801-815
    • /
    • 2021
  • Ellipses have a lot of interesting geometric properties. It is quite natural to ask whether such properties of ellipses and some related ones characterize ellipses. In this paper, we study some chord properties and area properties of ellipses. As a result, using the curvature and the support function of a strictly convex curve, we establish four characterization theorems of ellipses and hyperbolas centered at the origin.

AREA PROPERTIES ASSOCIATED WITH STRICTLY CONVEX CURVES

  • Bang, Shin-Ok;Kim, Dong-Soo;Kim, Incheon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.407-417
    • /
    • 2022
  • Archimedes proved that for a point P on a parabola X and a chord AB of X parallel to the tangent of X at P, the area of the region bounded by the parabola X and the chord AB is four thirds of the area of the triangle ∆ABP. This property was proved to be a characteristic of parabolas, so called the Archimedean characterization of parabolas. In this article, we study strictly convex curves in the plane ℝ2. As a result, first using a functional equation we establish a characterization theorem for quadrics. With the help of this characterization we give another proof of the Archimedean characterization of parabolas. Finally, we present two related conditions which are necessary and sufficient for a strictly convex curve in the plane to be an open arc of a parabola.

DIFFERENTIABILITY OF QUASI-HOMOGENEOUS CONVEX AFFINE DOMAINS

  • JO KYEONGHEE
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.485-498
    • /
    • 2005
  • In this article we show that every quasi-homogeneous convex affine domain whose boundary is everywhere differentiable except possibly at a finite number of points is either homogeneous or covers a compact affine manifold. Actually we show that such a domain must be a non-elliptic strictly convex cone if it is not homogeneous.

LINEAR MAPPINGS ON LINEAR 2-NORMED SPACES

  • White Jr. Albert;Cho, Yeol-Je
    • Bulletin of the Korean Mathematical Society
    • /
    • v.21 no.1
    • /
    • pp.1-5
    • /
    • 1984
  • The notion of linear 2-normed spaces was introduced by S. Gahler ([8,9,10,11]), and these space have been extensively studied by C. Diminnie, R. Ehret, S. Gahler, K. Iseki, A. White, Jr, and others. For nonzero vectors x,y in X, let V(x,y) denote the subspace of X generated by x and y. A linear 2-normed space (X,v) is said to be strictly convex ([3]) if v(x+y,z)=v(x,z)+v(y+z) and z not.mem.V(x,y) imply that y=ax for some a>0. Some characterizations of strict convexity for linear 2-normed spaces are given in [1,3,4,5,12]. Also, a linear 2-normed space (X,v) is said to be strictly 2-convex ([6]) if v(x,y)=v(x,z)=v(y,z)=1/3v(x+z, y+z)=1 implies that z=x+y. These space have been studied in [2,4,6,13]. It is easy to see that every strictly convex linear 2-normed space is always strictly 2-convex but the converse is not necessarily true. Throughout this paper, let (X,v) denote a linear 2-normed space.

  • PDF

Center of Gravity and a Characterization of Parabolas

  • KIM, DONG-SOO;PARK, SOOKHEE;KIM, YOUNG HO
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.2
    • /
    • pp.473-484
    • /
    • 2015
  • Archimedes determined the center of gravity of a parabolic section as follows. For a parabolic section between a parabola and any chord AB on the parabola, let us denote by P the point on the parabola where the tangent is parallel to AB and by V the point where the line through P parallel to the axis of the parabola meets the chord AB. Then the center G of gravity of the section lies on PV called the axis of the parabolic section with $PG=\frac{3}{5}PV$. In this paper, we study strictly locally convex plane curves satisfying the above center of gravity properties. As a result, we prove that among strictly locally convex plane curves, those properties characterize parabolas.