• Title/Summary/Keyword: strongly flat modules

Search Result 9, Processing Time 0.027 seconds

ON w-COPURE FLAT MODULES AND DIMENSION

  • Bouba, El Mehdi;Kim, Hwankoo;Tamekkante, Mohammed
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.763-780
    • /
    • 2020
  • Let R be a commutative ring. An R-module M is said to be w-flat if Tor R1 (M, N) is GV -torsion for any R-module N. It is known that every flat module is w-flat, but the converse is not true in general. The w-flat dimension of a module is defined in terms of w-flat resolutions. In this paper, we study the w-flat dimension of an injective w-module. To do so, we introduce and study the so-called w-copure (resp., strongly w-copure) flat modules and the w-copure flat dimensions for modules and rings. The relations between the introduced dimensions and other (classical) homological dimensions are discussed. We also study change of rings theorems for the w-copure flat dimension in various contexts. Finally some illustrative examples regarding the introduced concepts are given.

COPURE PROJECTIVE MODULES OVER FGV-DOMAINS AND GORENSTEIN PRÜFER DOMAINS

  • Shiqi Xing
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.4
    • /
    • pp.971-983
    • /
    • 2023
  • In this paper, we prove that a domain R is an FGV-domain if every finitely generated torsion-free R-module is strongly copure projective, and a coherent domain is an FGV-domain if and only if every finitely generated torsion-free R-module is strongly copure projective. To do this, we characterize G-Prüfer domains by G-flat modules, and we prove that a domain is G-Prüfer if and only if every submodule of a projective module is G-flat. Also, we study the D + M construction of G-Prüfer domains. It is seen that there exists a non-integrally closed G-Prüfer domain that is neither Noetherian nor divisorial.

ON 𝜙-w-FLAT MODULES AND THEIR HOMOLOGICAL DIMENSIONS

  • Zhang, Xiaolei;Zhao, Wei
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.4
    • /
    • pp.1039-1052
    • /
    • 2021
  • In this paper, we introduce and study the class of 𝜙-w-flat modules which are generalizations of both 𝜙-flat modules and w-flat modules. The 𝜙-w-weak global dimension 𝜙-w-w.gl.dim(R) of a commutative ring R is also introduced and studied. We show that, for a 𝜙-ring R, 𝜙-w-w.gl.dim(R) = 0 if and only if w-dim(R) = 0 if and only if R is a 𝜙-von Neumann ring. It is also proved that, for a strongly 𝜙-ring R, 𝜙-w-w.gl.dim(R) ≤ 1 if and only if each nonnil ideal of R is 𝜙-w-flat, if and only if R is a 𝜙-PvMR, if and only if R is a PvMR.

CHARACTERIZING ALMOST PERFECT RINGS BY COVERS AND ENVELOPES

  • Fuchs, Laszlo
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.131-144
    • /
    • 2020
  • Characterizations of almost perfect domains by certain covers and envelopes, due to Bazzoni-Salce [7] and Bazzoni [4], are generalized to almost perfect commutative rings (with zero-divisors). These rings were introduced recently by Fuchs-Salce [14], showing that the new rings share numerous properties of the domain case. In this note, it is proved that admitting strongly flat covers characterizes the almost perfect rings within the class of commutative rings (Theorem 3.7). Also, the existence of projective dimension 1 covers characterizes the same class of rings within the class of commutative rings admitting the cotorsion pair (𝒫1, 𝒟) (Theorem 4.1). Similar characterization is proved concerning the existence of divisible envelopes for h-local rings in the same class (Theorem 5.3). In addition, Bazzoni's characterization via direct sums of weak-injective modules [4] is extended to all commutative rings (Theorem 6.4). Several ideas of the proofs known for integral domains are adapted to rings with zero-divisors.

Nil-COHERENT RINGS

  • Xiang, Yueming;Ouyang, Lunqun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.579-594
    • /
    • 2014
  • Let R be a ring and $Nil_*$(R) be the prime radical of R. In this paper, we say that a ring R is left $Nil_*$-coherent if $Nil_*$(R) is coherent as a left R-module. The concept is introduced as the generalization of left J-coherent rings and semiprime rings. Some properties of $Nil_*$-coherent rings are also studied in terms of N-injective modules and N-flat modules.

w-MATLIS COTORSION MODULES AND w-MATLIS DOMAINS

  • Pu, Yongyan;Tang, Gaohua;Wang, Fanggui
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.5
    • /
    • pp.1187-1198
    • /
    • 2019
  • Let R be a domain with its field Q of quotients. An R-module M is said to be weak w-projective if $Ext^1_R(M,N)=0$ for all $N{\in}{\mathcal{P}}^{\dagger}_w$, where ${\mathcal{P}}^{\dagger}_w$ denotes the class of GV-torsionfree R-modules N with the property that $Ext^k_R(M,N)=0$ for all w-projective R-modules M and for all integers $k{\geq}1$. In this paper, we define a domain R to be w-Matlis if the weak w-projective dimension of the R-module Q is ${\leq}1$. To characterize w-Matlis domains, we introduce the concept of w-Matlis cotorsion modules and study some basic properties of w-Matlis modules. Using these concepts, we show that R is a w-Matlis domain if and only if $Ext^k_R(Q,D)=0$ for any ${\mathcal{P}}^{\dagger}_w$-divisible R-module D and any integer $k{\geq}1$, if and only if every ${\mathcal{P}}^{\dagger}_w$-divisible module is w-Matlis cotorsion, if and only if w.w-pdRQ/$R{\leq}1$.

On SF-rings and Regular Rings

  • Subedi, Tikaram;Buhphang, Ardeline Mary
    • Kyungpook Mathematical Journal
    • /
    • v.53 no.3
    • /
    • pp.397-406
    • /
    • 2013
  • A ring R is called a left (right) SF-ring if simple left (right) R-modules are flat. It is still unknown whether a left (right) SF-ring is von Neumann regular. In this paper, we give some conditions for a left (right) SF-ring to be (a) von Neumann regular; (b) strongly regular; (c) division ring. It is proved that: (1) a right SF-ring R is regular if maximal essential right (left) ideals of R are weakly left (right) ideals of R (this result gives an affirmative answer to the question raised by Zhang in 1994); (2) a left SF-ring R is strongly regular if every non-zero left (right) ideal of R contains a non-zero left (right) ideal of R which is a W-ideal; (3) if R is a left SF-ring such that $l(x)(r(x))$ is an essential left (right) ideal for every right (left) zero divisor x of R, then R is a division ring.