• Title/Summary/Keyword: testicular damage

Search Result 37, Processing Time 0.025 seconds

Protective Effect of Enerbalance on Cadmium-induced Testicular Damages in Mice (카드뮴에 의해 유도된 마우스의 고환 독성 모델에서 에너발란스의 보호 효과)

  • Park, Kwang-Hyun;Mok, Ji-Ye;Kim, Sung-Zoo;Kang, Hyung-Sub;Shim, Jae-Suk;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.482-488
    • /
    • 2011
  • Cadmium (Cd) is well known as a spermatotoxic and gonadotoxic heavy metal ion. This study was performed to assess the possible protective effect of Enerbalance on Cd-induced spermiotoxicity and testicular damage. The control group received isotonic saline; Cd group received Cd (2 mg/kg BW per day) orally; extract-treated groups were orally administrated with Enerbalance (50 mg and 100 mg/kg BW per day) and Cd for 10 days. Morphological changes of testicular tissue, sperm characteristics, oxidative/antioxidative parameters from testis, and serum sexual hormone level were determined. Enerbalance was significantely increased sperm amount in cauda epididymis without changes of ratio of epididymis/body weight and testis/body weight. Cd caused a marked decrease in epididymal sperm concentration and chemotactic sperm motility, testicular superoxide dismutase (SOD), catalase (CAT), Enerbalance was significantly ameliorated loss of epididymal sperm concentration, sperm chemotactic motility, antioxidative parameters, and male hormone whereas decreased abnormal architecture by testis damage. Enerbalance was successfully attenuated these adverse effects of Cd and offers a dose-dependent protection. Our study demonstrated that Enerbalance could proffer a measure of protection against Cd-induced testicular damage and spermiotoxicity by possibly reducing oxidative stress and increasing the antioxidant defense mechanism in mice.

Protective Effects of Water Extract from Cuscutae Semen on Ketoconazole-Induced Oxidative Stress in Testicular Damage Male Rats (토사자 추출물의 ketoconazole로 유도된 고환 독성 흰쥐의 산화적 스트레스 저해효과)

  • Kim, Sung-Hoon;Choi, Jong -Won
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.3
    • /
    • pp.417-424
    • /
    • 2011
  • Ketoconazole (KET) is an antifungal drug with a broad spectrum of activity that also induces reproductive toxicity in humans and animals. KET inhibits C17-20 lyase which blocks the conversion of 17 ${\alpha}$-hydroxyprogesterone to androstenedione. The effect of Cuscutae semen(CS) extract against KET-induced testicular damage was evaluated in male rats. CS extract was administered orally (100 and 200 mg/kg) for 26 days. Three weeks after CS extract administration, KET was CS-administered intraperitoneally at a dose of 100 mg/kg once a day for 5 days. KET-induced reproductive toxicity was associated with clear reductions of the weights of testes and epididymides, sperm indices and serum testosterone levels. In addition, marked oxidative damage to testicular lipids and alterations of natural antioxidant enzymes were reported in association with KET toxicity. Most of the KET-induced effects were greatly decreased with the concomitant application of CS extract. This study suggests a protective role of Cuscutae semen extract that could be attributed to its antioxidant properties.

Protective effects of curcumin against methotrexate-induced testicular damage in rats by suppression of the p38-MAPK and nuclear factor-kappa B pathways

  • Kilinc, Leyla;Uz, Yesim Hulya
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.3
    • /
    • pp.211-220
    • /
    • 2021
  • Objective: The present study aimed to investigate the possibility that curcumin (CMN) protects against methotrexate (MTX)-induced testicular damage by affecting the phospho-p38 (p-p38) mitogen-activated protein kinase (MAPK) and nuclear factor-kappa B (NF-κB) signaling pathways. Methods: Eighteen male Wistar albino rats were randomly divided into three groups. The control group was given an intragastric administration of dimethyl sulfoxide (DMSO) daily for 14 days, the MTX group was given a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day, and the MTX+CMN group was given intragastric CMN (100 mg/kg/day, dissolved in DMSO) for 14 days and a single intraperitoneal dose of MTX (20 mg/kg) on the 11th day. At the end of the experiment, all animals were sacrificed and the testicular tissues were removed for morphometry, histology, and immunohistochemistry. Body and testicular weights were measured. Results: Body weights, seminiferous tubule diameter, and germinal epithelium height significantly decreased in the MTX group compared to the control group. Whereas, the number of histologically damaged seminiferous tubules and interstitial space width significantly increased in the MTX group. In addition, the number of p-p38 MAPK immunopositive cells and the immunoreactivity of NF-κB also increased in the MTX group compared to the control group. CMN improved loss of body weight, morphometric values, and histological damage due to MTX. CMN also reduced the number of p-p38 MAPK immunopositive cells and the NF-κB immunoreactivity. Conclusion: CMN may reduce MTX-induced testicular damage by suppressing the p38 MAPK and NF-κB signaling pathways.

Effect of etoricoxib on experimental oxidative testicular ischemia-reperfusion damage in rats induced with torsion-detorsion

  • Yapanoglu, Turgut;Ozkaya, Fatih;Yilmaz, Ali Haydar;Mammadov, Renad;Cimen, Ferda Keskin;Hirik, Erkan;Altuner, Durdu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.5
    • /
    • pp.457-464
    • /
    • 2017
  • Etoricoxib features antioxidant and anti-inflammatory properties concomitantly, suggesting that it may be beneficial in testicular ischemia reperfusion (I/R) damage. Our aim is to investigate the effects of etoricoxib on testicular I/R damage induced with torsion-detorsion (TD). The etoricoxib + torsion-detorsion (ETD) groups of animals were given etoricoxib in 50 and 100 mg/kg of body weight (ETD-50 and ETD-100), while the testes torsion-detorsion (TTD) and sham operation rat group (SOG) animals were given single oral doses of distilled water as a solvent. TTD, ETD-50 and ETD-100 groups were subjected to $720^{\circ}$ degrees torsion for four hours, and detorsion for four hours. The SOG group was not subjected to this procedure. Biochemical, gene expression and histopathological analyses were carried out on the testicular tissues. The levels of malondialdehyde (MDA), myeloperoxidase (MPO), interleukin-1 beta ($IL-1{\beta}$) and tumor necrosis factor alpha ($TNF-{\alpha}$) were significantly higher, and the levels of total glutathione (tGSH) and glutathione reductase (GSHRd) were significantly lower in the TTD group, compared to the ETD-50, ETD-100 and SOG groups. Etoricoxib at a dose of 100 mg/kg better prevented I/R damage than the 50 mg/kg dose. Etoricoxib may be useful in clinical practice in the reduction of I/R damage on testes caused by torsion-detorsion.

Korean Red Ginseng (Panax ginseng Meyer) with enriched Rg3 ameliorates chronic intermittent heat stress-induced testicular damage in rats via multifunctional approach

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Hwang, Seock-Yeon;Jeong, Min-Sik;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.43 no.1
    • /
    • pp.135-142
    • /
    • 2019
  • Background: Panax ginseng Meyer, known as Korean Red Ginseng (KRG), is one of the important age-old traditional herbs used in boosting libido and improving male fertility. In this study, the effects of Rg3-enriched KRG extract (KGC04P) on heat stress-induced testicular damage in experimental rats was evaluated. Methods: Male rats (Sprague-Dawley) were divided into four groups (n = 10): normal control (NC), heat-stressed control (HC), heat-stressed plus KGC04P-100 mg/kg (HK100), and heat-stressed plus KGC04P-200 mg/kg (HK200) groups. Starting 1 week prior to heat stress, animals were administered orally with KGC04P (100 and 200 mg/kg) mixed with a regular pellet diet and continued for 25 weeks. Heat stress was induced to HC, HK100, and HK200 groups by intermittently exposing the animals to high temperatures ($32{\pm}1^{\circ}C$, 2 h/day). After 6 months, animals were euthanized under general anesthesia with carbon dioxide and evaluated for various parameters in serum and testicular tissue by using Western blotting, biochemical kits, and reverse transcription-polymerase chain reaction. Results: Significant (p < 0.05) alterations in several parameters, such as body/organ weight, sperm kinematics, and lipid metabolism marker levels, in the serum and testis of rats were observed. Further, the expression of testicular antioxidant enzymes, inflammatory cytokines, sex hormonal receptors, and spermatogenesis-related genes were also affected significantly (p < 0.05) in the heat-stressed group. However, KGC04P prevented the heat stress-induced changes in rats significantly (p < 0.05) at both concentrations. Conclusion: KGC04P attenuated heat stress-induced testicular damage by a multifunctional approach and can be developed as an excellent therapeutic agent for hyperthermia-mediated male infertility.

Cardamonin exerts a protective effect against autophagy and apoptosis in the testicles of diabetic male rats through the expression of Nrf2 via p62-mediated Keap-1 degradation

  • Samir, Shereen M.;Elalfy, Mahmoud;El Nashar, Eman Mohamad;Alghamdi, Mansour A.;Hamza, Eman;Serria, Mohamed Saad;Elhadidy, Mona G.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.25 no.4
    • /
    • pp.341-354
    • /
    • 2021
  • Cardamonin (CARD) is a chalconoid with anti-inflammatory and antioxidant properties, and it is present in several plants. We sought to explore whether CARD exerts any positive effects against hyperglycemia-induced testicular dysfunction caused by type 2 diabetes and aimed to identify its possible intracellular pathways. Adult male rats were subdivided into six groups: control, CARD, diabetic (DM), DM + glibenclamide (GLIB), DM + CARD and DM + GLIB + CARD. Type 2 DM induced a significant increase in blood glucose and insulin resistance, along with diminished serum insulin, testosterone and gonadotropins levels, which were associated with the impairment of key testicular androgenic enzymes and cellular redox balance. Administration of CARD at a dose of 80 mg/kg for 4 weeks effectively normalized all of these alterations, and the improvement was confirmed by epididymal sperm analysis. After treatment with CARD, the pathological changes in spermatogenic tubules were markedly improved. Significantly, CARD upregulated testicular glucose transporter-8 (GLUT-8) expression and had inhibitory effects on elevated autophagy markers and caspase-3 immunoreactive cells. Furthermore, our results revealed that CARD was able to attenuate damage via activation of Nrf2 through the p62-dependent degradation of testicular anti-Kelch-like ECH-associated protein-1 (Keap-1). In conclusion, this study suggests that CARD provides protection against diabetic stress-mediated testicular damage. The use of CARD with conventional anti-diabetic therapy was associated with improved efficacy compared with conventional therapy alone.

Protective Effects of the Nuclear Factor Kappa B Inhibitor Pyrrolidine Dithiocarbamate on Experimental Testicular Torsion and Detorsion Injury

  • Kabay, Sahin;Ozden, Hilmi;Guven, Gul;Burukoglu, Dilek;Ustuner, Mehmet Cengiz;Topal, Fatma;Gunes, Hasan Veysi;Ustuner, Derya;Ozbayer, Cansu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.18 no.4
    • /
    • pp.321-326
    • /
    • 2014
  • Testicular torsion results with the damage of the testis and it is a surgical emergency. Pyrrolidine dithiocarbamate (PDTC) is a low-molecular-weight antioxidant and potent inhibitor of nuclear factor kappa B (NF-${\kappa}B$) activation. In this study, we aimed to investigate the effects of PDTC to testicular torsion-detorsion (T/D) injury. Forty adult male Sprague-Dawley rats were separated into four groups. A sham operation was performed in group I. In group II, torsion is performed 2 hours by 720 degree extravaginally testis. In group III, 4 h reperfusion of the testis was performed after 2 h of testicular torsion. In group IV, after performing the same surgical procedures as in group III, PDTC (100 mg/kg, intravenous's) was administered before 30 min of detorsion. The testes tissue malondialdehyde (MDA), superoxide dismutase (SOD) catalase (CAT) level was evaluated. Histological evaluations were performed after hematoxylin and eosin staining. Testicular tissue MDA levels were the highest in the T/D groups compared with treatment group. Administration of PDTC prevented a further increase in MDA levels. Significant decrease occurred in CAT and SOD levels in treatment group compared with the control group. The rats in the treatment group had normal testicular architecture. The results suggest that PDTC can be a potential protective agent for preventing the biochemical and histological changes related to oxidative stress in testicular injury caused by testis torsion.

Ameliorative effects of propolis upon reproductive toxicity in males

  • Saleem Ali Banihani
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.50 no.1
    • /
    • pp.12-18
    • /
    • 2023
  • Propolis is a sticky natural product produced by honeybees. Research studies have discussed the effectiveness of propolis, directly or indirectly, for ameliorating reproductive toxicity in males; however, this research has not yet been reviewed. The current paper presents an integrative summary of all research studies in Scopus and PubMed that investigated the effects of propolis on semen quality, and hence on male fertility, in conditions of reproductive toxicity. The consensus indicates that propolis ameliorates reproductive toxicity and enhances semen quality in vivo in test animals. These effects may be attributable to the ability of propolis to reduce testicular oxidative damage, enhance testicular antioxidant defense mechanisms, increase nitric oxide production, reduce testicular apoptotic injury, and boost testosterone production. However, to generalize these effects in humans would require further research.

Cordycepin from Medicinal Fungi Cordyceps militaris Mitigates Inflammaging-Associated Testicular Damage via Regulating NF-κB/MAPKs Signaling in Naturally Aged Rats

  • Kopalli, Spandana Rajendra;Cha, Kyu-Min;Cho, Jae Youl;Kim, Si-Kwan;Koppula, Sushruta
    • Mycobiology
    • /
    • v.50 no.1
    • /
    • pp.86-95
    • /
    • 2022
  • Inflammaging in male reproductive organs covers a wide variety of problems, including sexual dysfunction and infertility. In this study, the beneficial effects of cordycepin (COR), isolated from potential medicinal fungi Cordyceps militaris, in aging-associated testicular inflammation and serum biochemical changes in naturally aged rats were investigated. Male Sprague Dawley rats were divided into young control (YC), aged control (AC), and COR (5, 10, and 20 mg/kg) treated aged rat groups. Aging-associated serum biochemical changes and inflammatory parameters were analyzed by biochemical assay kits, Western blotting, and real-time RT-PCR. Results showed a significant (p < 0.05) alteration in the total blood cell count, lipid metabolism, and liver functional parameters in AC group when compared with YC group. However, COR-treated aged rats ameliorated the altered biochemical parameters significantly (p < 0.05 and p < 0.01 at 5, 10, and 20 mg/kg, respectively). Furthermore, the increase in the expression of inflammatory mediators (COX-2, interleukin (IL)-6, IL-1β, and tissue necrosis factor-alpha) in aged rat testis was significant (p < 0.05) when compared with YC group. Treatment with COR at 20 mg/kg to aged rats attenuated the increased expression of inflammatory mediators significantly (p < 0.05). Mechanistic studies revealed that the potential attenuating effects exhibited by COR in aged rats was mediated by regulation of NF-κB activation and MAPKs (c-Jun N-terminal kinase, extracellular signal-regulated kinase 1/2, and p38) signaling. In conclusion, COR restored the altered serum biochemical parameters in aged rats and ameliorated the aging-associated testicular inflammation proving the therapeutic benefits of COR targeting inflammaging-associated male sexual dysfunctions.

Light and Electron Microscopic Observation in the Frozen-thawed Mouse Testicular Tissues (동결보존된 생쥐 고환조직 세포의 광학 및 전자현미경적 관찰)

  • Han, Sang-Chul;Song, Sang-Jin;Lee, Sun-Hee;Oh, Seung-Han;Koong, Mi-Kyung;Park, Yong-Seog
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.2
    • /
    • pp.127-133
    • /
    • 2003
  • Objective: The aim of this study was to investigate the morphological aspects of testicular tissue before and after freezing-thawing by light and transmission electron microscopy. Methods: Tissue biopsies were carried out on mouse testis for freezing. Samples in medium containing 20% glycerol were frozen by computer-controlled freezing program. The effect of freezing-thawing on the structural change of testicular tissues were examined by light and electron microscopy. Results: The freezing-thawing procedure had no significant effect on tubular diameter. However, it caused folding of the lamina propria, and notable damage to Sertoli cells, spermatogonia and spermatocytes. The cells were detached, desquamated from the basal lamina and had increased vacuolization. Round spermatids, elongated spermatids and spermatozoa were less affected, and most of them maintained their normal structure. Conclusions: The structure of spermatogonia, spermatocyte and basal compartments in seminiferous epithelium was significantly altered by freezing-thawing procedure of mouse testicular tissues. Thus, we need to develop a more reliable method for the cryopreservation of testicular tissues.