• Title/Summary/Keyword: the tropical western Pacific

Search Result 106, Processing Time 0.024 seconds

Relationships between Summer Droughts in Korea and Activities of Tropical Cyclones over the Northwestern Pacific (한국 여름가뭄과 북서태평양 태풍활동의 연관성)

  • Choi, Ki-Seon;Kim, Do-Woo;Byun, Hi-Ryong
    • Atmosphere
    • /
    • v.18 no.4
    • /
    • pp.279-286
    • /
    • 2008
  • In the tropical western Pacific (especially, west of 135oE, including South China Sea and the Philippines), during boreal summer, it was found that a strong correlation exists between the tropical cyclone activity and the drought conditions in Korea. During the summer drought, firstly, there were strong ascending flows over the tropical western Pacific with more tropical cyclone genesis, and to compensate for this, descending flows develop in the mid-latitudes, thereby causing drought; in other words, a secondary circulation is formed between the tropical western Pacific and mid-latitudes of East Asia. Secondly, the developments of both the subtropical western Pacific high and the Manchurian low are suppressed. As a result, both the land-sea pressure gradient and the southerly flow from low-latitudes to Korean area are also weakened, which reduces approaches of tropical cyclones to this area despite the high frequency of their geneses.

Relationship between Interannual Variability of Phytoplankton and Tropical Cyclones in the Western North Pacific

  • Park, Jong-Yeon;Kug, Jong-Seong;Park, Ji-Soo;Chang, Chan-Joo
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.29-35
    • /
    • 2012
  • We investigated the interannual relationship between chlorophyll concentrations in the western North Pacific and tropical cyclones (TCs) in the western North Pacific by analyzing data collected for >12 years. Despite the short-term scale (2~3 weeks) in the contribution of tropical cyclones to phytoplankton, the current study revealed that the long-term chlorophyll variability in the western North Pacific is profoundly related to long-term variability in the frequency of TCs. It was also found that the Pacific decadal oscillation (PDO) tends to control such relationships between the 2 bio-physical systems. This result suggests a significant climatic relationship between TC activity and marine phytoplankton, and also suggests the possibility of more accurate estimations of primary production in the western North Pacific.

Characteristics of Tropical Cyclones Over the Western North Pacific in 2009 (2009년 태풍 특징)

  • Cha, Eun-Jeong;Kwon, H. Joe;Kim, Sejin
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.451-466
    • /
    • 2010
  • This edition has continued since 2006 tropical cyclone season our effort to provide standard tropical cyclone summaries by the western North Pacific basin and detailed reviews of operationally or meteorologically significant tropical cyclones to document significant challenges and shortfalls in the tropical cyclone warning system to serve as a focal point for research and development efforts. The tropical cyclone season of 2009 in the western North Pacific basin is summarized and the main characteristics of general atmospheric circulation are described. Also, the official track and intensity forecasts of these cyclones are verified. The total number is less than 59-year (1951~2009) average frequency of 26.4. The 2009 western North Pacific season was an inactive one, in which 22 tropical storms generated. Of these, 13 TCs reached typhoon (TY) intensity, while the rest 9 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - three STS and six TS storms. On average of 22 TCs in 2009, the Korea Meteorological Administration official track forecast error for 48 hours was 219 km. There was a big challenge for individual cyclones such as 0902 CHAN-HOM, 0909 ETAU, and 0920 LUPIT resulting in significant forecast error, with both intricate tracks and irregular moving speed. There was no tropical cyclone causing significant direct impact to the country. The tropical cyclone season in 2009 began in May with the formation of KUJIRA (0901). In September and October, ten TSs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to July. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2009 summertime. Year 2009 has continued the below normal condition since mid 1990s which is apparent in the decadal variability in TC activity.

Interaction among the East Asian Summer and Winter Monsoons, the Tropical Western Pacific and ENSO Cycle

  • Huang, Rong-Hui;Lu, Ri-Yu;Chen, Wen;Chen, Ji-Rong
    • Atmosphere
    • /
    • v.13 no.2
    • /
    • pp.47-68
    • /
    • 2003
  • Recent advances in the studies on the interaction between Asian monsoon and ENSO cycle are reviewed in this paper. Through the recent studies, the East Asian summer monsoon circulation system and the East Asian climate system have proposed. Moreover, different responses of the (winter and summer) monsoon circulation and summer rainfall anomalies in East Asia to ENSO cycle during its different stages have been understood further. Recently, the studies on the dynamical effect of East Asian monsoon on the thermal variability of the tropical western Pacific and ENSO cycle have been greatly advanced. These studies demonstrated further that ENSO cycle originates from the tropical western Pacific, and pointed out that the dynamical effect of East Asian winter and summer monsoons on ENSO cycle may be through the atmospheric circulation and zonal wind anomalies over the tropical western Pacific, which can excite the oceanic Kelvin wave and Rossby waves in the equatorial Pacific. Besides, the scientific problems in the interaction between Asian monsoon and ENSO cycle, which should be studied further in the near future, are also pointed out in this paper.

Interrelationships between Sea Surface Temperatures and Clouds over the Tropical Oceans (열대 해양의 해수면온도와 구름의 상호관계)

  • 송봉근;김영섭;박경원
    • Proceedings of the KSRS Conference
    • /
    • 2001.03a
    • /
    • pp.92-97
    • /
    • 2001
  • The intra-annual and interannual variations of total, high, middle, low clouds, and cloud forcing net solar radiation flux, cloud forcing net long-wave radiation flux, and SSTs over the tropical oceans are investigated with the use of ISCP D2, NCEP/NCAR Reanalysis for January 1983-December 1993. The intra-annual variation of total cloudiness is dominated by high and middle clouds in the western Pacific and central tropical oceans, the interannual variation of total cloudiness is also dominated by high and middle clouds in the central Pacific and Atlantic. The dominant intra-annual and interannual EOFs of total cloudiness have spatially coherent link with those SSTs. For the interannual EOFs, total cloudiness and SSTs are related to E1 nino-Southern Oscillation(ENSO). The second most important intra-annual EOFs of total cloudiness are related to Inter Tropical Convergence Zone(ITCZ). The third most important intra-annual EOFs show coherent relation in the western Pacific. The correlation analysis between cloud radiative effects and SSTs show spatially coherent relation over the tropical oceans even though cloud forcing cooling effect is much higher than heating effect.

  • PDF

The Intensification of Walker Circulation over the Past 15 Years from 1999 and Its Relation to TC Activity in the Western North Pacific

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun
    • Journal of the Korean earth science society
    • /
    • v.37 no.6
    • /
    • pp.359-372
    • /
    • 2016
  • The time-series of Walker circulation index (WCI) in this study shows the strengthening of the Walker circulation in recent years. To further understand the large-scale features related to the WCI strengthening, a difference between the averaged meteorological variables in two time periods 1999-2013 and 1984-1998 is analyzed. The difference in 850 hPa stream flows between the two periods shows that the anomalous easterlies (anomalous trade wind) are dominant due to the strengthening of anomalous anticyclonic circulations at the subtropical Pacific of both hemispheres. The difference between the averaged zonal atmospheric circulations over $5^oS-5^oN$ in the two periods confirms that upward flows are strengthened at the tropical western Pacific and downward flows are strengthened at the tropical central and eastern Pacific in recent years. It matches the WCI strengthening in recent years. The time-series of tropical cyclone (TC) genesis frequency from July to September shows that a mean TC genesis frequency from 1999-2013 decreases compared to that of the time period 1984-1998. The monsoon trough in the period 1984-1998 was located in the further east direction and stronger than that in the period 1999-2013. TCs in the recent period that are generated in further west than TCs in the past period moved from the west. Thus, the TC intensity along the coasts in East Asia becomes weaker in recent period. The intensification of Walker circulation in recent years is related to the weaker TC intensity in East Asia through strengthened anomalous anticyclones at the subtropical western Pacific.

Characteristics of Tropical Cyclones over the Western North Pacific in 2008 (2008년 태풍 특징)

  • Cha, Eun-Jeong;Hwang, Ho-Seong;Yang, Kyung-Jo;Won, Seong-Hee;Ko, Seong-Won;Kim, Dong-Ho;Kwon, H. Joe
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.183-198
    • /
    • 2009
  • The purpose of this study is to summarize the tropical cyclone (TC) activity of 2008 over the western North Pacific including the verification of the official track and intensity forecast errors of these TCs. The TC activity - frequency, Normalized Typhoon Activity (NTA), and life span - was lower than 58-year (1951-2008) average. 22 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2008. The total number is less than 58-year average frequency of 26.4. Out of 22 tropical cyclones, 11 TCs reached typhoon (TY) intensity, while the rest 11 TCs only reached severe tropical storm (STS) and tropical storm (TS) intensity - six STS and five TS storms. One typhoon KALMAEGI (0807) among them affected the Korea peninsula. However, no significant impact - casualty or property damage - was reported. On average of 22 TCs in 2008, the Korea Meteorological Administration (KMA) official track forecast error for 48 hours was 229 km. There was a big challenge for individual cyclones such as 0806 FENGSHEN and 0817 HIGOS presenting significant forecast error, with both intricate tracks and irregular moving speed. The tropical cyclone season in 2008 began in April with the formation of NEOGURI (0801). In May, four TCs formed in the western North Pacific in response to enhanced convective activity. On the other hand, the TC activity was very weak from June to August. It is found that the unusual anti-cyclonic circulation in the lower level and weak convection near the Philippines are dominant during summertime. The convection and atmospheric circulation in the western North Pacific contributed unfavorable condition for TC activity in the 2008 summertime. The 2008 TC activity has continued the below normal state since mid 1990s which is apparent the decadal variability in TC activity.

Seasonal Prediction of Tropical Cyclone Frequency in the Western North Pacific using GDAPS Ensemble Prediction System (GDAPS 앙상블 예보 시스템을 이용한 북서태평양에서의 태풍 발생 계절 예측)

  • Kim, Ji-Sun;Kwon, H. Joe
    • Atmosphere
    • /
    • v.17 no.3
    • /
    • pp.269-279
    • /
    • 2007
  • This study investigates the possibility of seasonal prediction for tropical cyclone activity in the western North Pacific by using a dynamical modeling approach. We use data from the SMIP/HFP (Seasonal Prediction Model Inter-comparison Project/Historical Forecast Project) experiment with the Korea Meteorological Administration's GDAPS (Global Data Assimilation and Prediction System) T106 model, focusing our analysis on model-generated tropical cyclones. It is found that the prediction depends primarily on the tropical cyclone (TC) detecting criteria. Additionally, a scaling factor and a different weighting to each ensemble member are found to be essential for the best predictions of summertime TC activity. This approach indeed shows a certain skill not only in the category forecast but in the standard verifications such as Brier score and relative operating characteristics (ROC).

Temporal and Spatial Variability of Precipitation and Evaporation over the Tropical Ocean

  • Yoo, Jung-Moon;Lee, Hyun-A
    • Journal of the Korean earth science society
    • /
    • v.24 no.1
    • /
    • pp.22-29
    • /
    • 2003
  • Temporal and spatial variability of precipitation (P), evaporation (E), and moisture balance (P-E; precipitation minus evaporation) has been investigated over the tropical ocean during the period from January 1998 to July 2001. Our data were analyzed by the EOF method using the satellite P and E observations made by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and the Special Sensor Microwave/Imager (SSM/I). This analysis has been performed for two three-year periods as follow; The first period which includes the El Ni${\tilde{n}}$o in early 1998 ranges from January 1998 to December 2000, and the second period which includes the La Ni${\tilde{n}}$o events in the early 1999 and 2000 (without El Ni${\tilde{n}}$o) ranges from August 1998 to July 2001. The areas of maxima and high variability in the precipitation and in the P-E were displaced from the tropical western Pacific and the ITCZ during the La Ni${\tilde{n}}$o to the tropical middle Pacific during the El Ni${\tilde{n}}$o, consistent with those in previous P studies. Their variations near the Korean Peninsula seem to exhibit a weakly positive correlation with that in the tropical Pacific during the El Ni${\tilde{n}}$o. The evaporation, out of phase with the precipitation, was reduced in the tropical western Pacific due to humid condition in boreal summer, but intensified in the Kuroshio and Gulf currents due to windy condition in winter. The P-E variability was determined mainly by the precipitation of which the variability was more localized but higher by 2-3 times than that of evaporation. Except for the ITCZ (0-10$^{\circ}$N), evaporation was found to dominate precipitation by ${\sim}$2 mm/day over the tropical Pacific. Annual and seasonal variations of P, E, and P-E were discussed.

TIPEX (Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment) Program (태평양-인도양 해양순환 연구 프로그램)

  • Jeon, Dongchull;Kim, Eung;Shin, Chang Woong;Kim, Cheol-Ho;Kug, Jong Seong;Lee, Jae Hak;Lee, Youn-Ho;Kim, Suk Hyun
    • Ocean and Polar Research
    • /
    • v.35 no.3
    • /
    • pp.259-272
    • /
    • 2013
  • One of the factors influencing the climate around Korea is the oceanic-atmospheric variability in the tropical region between the eastern Indian and the western Pacific Oceans. Lack of knowledge about the air-sea interaction in the tropical Indo-Pacific region continues to make it problematic forecasting the ocean climate in the East Asia. The 'Tropical Indo-Pacific water transport and ecosystem monitoring EXperiment (TIPEX)' is a program for monitoring the ocean circulation variability between Pacific and Indian Oceans and for improving the accuracy of future climate forecasting. The main goal of the TIPEX program is to quantify the climate and ocean circulation change between the Indian and the Pacific Oceans. The contents of the program are 1) to observe the mixing process of different water masses and water transport in the eastern Indian and the western Pacific, 2) to understand the large-scale oceanic-climatic variation including El Nino-Southern Oscillation (ENSO)/Warm Pool/Pacific Decadal Oscillation (PDO)/Indian Ocean Dipole (IOD), and 3) to monitor the biogeochemical processes, material flux, and biological changes due to the climate change. In order to effectively carry out the monitoring program, close international cooperation and the proper co-work sharing of tasks between China, Japan, Indonesia, and India as well as USA is required.