• Title/Summary/Keyword: tidal action

Search Result 55, Processing Time 0.028 seconds

Analysis and Quantification of Seawater Infiltration by Wave Action in Coastal Zone (연안해역에서 파도에 의한 해수 침투이론의 비교와 정량화)

  • Cheong Cheong-jo;Choi Doo-hyoung;Kim Tae-keun;Okada Mitsumasa
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.3-11
    • /
    • 2001
  • To know the seawater infiltration into tidal flat sediment in coastal area is very important, because it is significantly correlated with the infiltration and transportation of pollutants in soil, the supply of dissolved oxygen, nutrients and organic matter to benthic organisms for survival of benthic organisms and the seawater purification. So, we set up purpose to clarify the infiltration behavior of seawater by wave action in tidal flat, to clear the effects of slope of tidal flat and breaking wave height on seawater infiltration and to quantify the infiltration volume of seawater. For purpose, the seawater infiltration was studied with visualization method by using coloring tracer and transparent glass beads replaced as natural sediment in model tidal flat. Specific conclusions derived from this study are as follows. The semi-circular type infiltration of seawater by wave action into saturated sediment was a new infiltration behavior that was not considered in previous studies. The infiltration rate of seawater was increased with increasing of breaking wave height and slope of tidal flat. However, the effects of the slope was bigger than that of breaking wave height on seawater infiltration into tidal flat sediments. It was possible to calculate the infiltration volume of seawater by wave action in natural tidal flat sediment and in fields. Therefore, we can point out that wave action play an important role in the supply of dissolved oxygen, nutrients and organic matter to benthic organisms, transportation or diffusion of pollutants and seawater purification. So, we hope to be studied the supply of food to benthic organism, pollutant transport and seawater purification on the base of these results.

  • PDF

A Study on Developement of Optimization Model for Single Action Tidal Power Station (단류식 창조발전의 조력발전소 최적화 운영 Model 개발에 관한 연구)

  • Kim, Hyun-Han;Kim, Man-Kie;Kim, June-Kyou;Ok, Yeon-Ho;Kim, Kwang-Ho;Jeong, Jong-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1144_1145
    • /
    • 2009
  • Tidal power station is using the difference of the ebb and flow and the single action tidal power is dependent on tide amplitude and basin volume. Therefore the inflow of basin in rainy season has also effect on the daily power. Also if operating units are changed then starting head too changed. Therefore the number of units are very important for the optimization model. According to our study the primary point when we make a determination of optimization is starting head and governorl control mode. On this study optimization model for tidal power station is considered all of this conditions.

  • PDF

Effects of new construction technology on performance of ultralong steel sheet pile cofferdams under tidal action

  • Li, Ping;Sun, Xinfei;Chen, Junjun;Shi, Jiangwei
    • Geomechanics and Engineering
    • /
    • v.27 no.6
    • /
    • pp.561-571
    • /
    • 2021
  • Cofferdams made of teel sheet piles are commonly utilized as support structures for excavation of sea-crossing bridge foundations. As cofferdams are often subject to tide variation, it is imperative to consider potential effects of tide on stability and serviceability of sheet piles, particularly, ultralong steel sheet piles (USSPs). In this study, a real USSP cofferdam constructed using new construction technology in Nanxi River was reported. The design of key parts of USSP cofferdam in the presence of tidal action was first introduced followed by the description of entire construction technology and associated monitoring results. Subsequently, a three-dimensional finite-element model corresponding to all construction steps was established to back-analyze measured deflection of USSPs. Finally, a series of parametric studies was carried out to investigate effects of tide level, soil parameters, support stiffness and construction sequence on lateral deflection of USSPs. Monitoring results indicate that the maximum deflection during construction occurred near the riverbed. In addition, measured stress of USSPs showed that stability of USSP cofferdam strengthened as construction stages proceeded. Moreover, the numerical back-analysis demonstrated that the USSP cofferdam fulfilled the safety requirements for construction under tidal action. The maximum deflection of USSPs subject to high tide was only 13.57 mm at a depth of -4 m. Sensitivity analyses results showed that the design of USSP cofferdam system must be further improved for construction in cohesionless soils. Furthermore, the 5th strut level before concreting played an indispensable role in controlling lateral deflection of USSPs. It was also observed that pumping out water before concreting base slab could greatly simplify and benefit construction program. On the other hand, the simplification in construction procedures could induce seepage inside the cofferdam, which additionally increased the deflection of USSPs by 10 mm on average.

Geotechnical Properties of Sandy Tidal Flat and Stability of Artificial Tidal Flat (모래질 갯벌의 지반공학적 특성 및 인공갯벌의 안정성)

  • 권오순;장인성;이광수;염기대
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.127-137
    • /
    • 2003
  • The researches on the construction of artificial coastal wetlands have been progressed in order to cope with the situation that the area of Korean tidal flat has been reduced due to several coastal developments This study, as a part of the project on construction of the artificial tidal flats, deals with the comparison of the geotechnical characteristics between natural tidal flat and artificial tidal flat, and is also focused on the stability analysis of tidal flats. Various laboratory tests were performed using disturbed and undisturbed samples, which were obtained from a sandy tidal flat in Korea. The stability of the sandy soils accumulated on the tidal flat was investigated by comparing the shear strength of soil evaluated from laboratory test with induced shear stress due to both current and wave action.

Simulation of chloride penetration into concrete structures subjected to both cyclic flexural loads and tidal effects

  • Mien, Tran Van;Stitmannaithum, Boonchai;Nawa, Toyoharu
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.421-435
    • /
    • 2009
  • Chloride induced corrosion is a concern that governs the durability of concrete structures in marine environments, especially in tidal environments. During the service lives of concrete structures, internal cracks in the concrete cover may appear due to imposed loads, accelerating chloride penetration because of the simultaneous action of environmental and service structural loads. This paper investigated the effects of cyclic flexural loads on chloride diffusion characteristics of plain concretes, and proposed a model to predict the chloride penetration into plain concretes subjected to both tidal environments and different cyclic flexural load levels. Further, a new experiment was performed to verify the model. Results of the model using Finite Difference Method (FDM) showed that the durability of concretes in tidal environments was reduced as cyclic flexural load levels, SR, increased, and the modeling results fitted well with the experimental results.

The Impact of the Developments and Dwellers on the Beach and Sanddune Characteristics in the Chungcheong-Namdo Province (지역개발과 주민생활이 환경에 미치는 영향 -충청남도의 비치와 해안사구를 사례로-)

  • Kahng, Tay-Gyoon
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.4
    • /
    • pp.291-302
    • /
    • 2003
  • This paper examined the impacts of the regional developments and dwellers behavior on the Seacoast. Seacoast features a variety of landforms which are created by the action of waves and tidal flows. The coastal landforms are found mainly in the interface between land and sea. Although erosional landforms constitute prominent landscape features as sea stack, sea arch, and rock cliff do, it is nonetheless the depositional features such as beaches, tidal flats, offshore bars, deltas, sanddunes, and coastal plains that have various ramifications for human communities. Among these, beaches and coastal sanddunes are special in that their formation is attributable to the combined action of waves, tidal flows, and winds. The main line of discussion in this dissertation is concerned with the transformation of group of beaches sanddunes along the coastline of Chungcheong-Namdo Province. To some extent, the erosion of coastal dunes has been a global phenomenon. The degradation process occurs most actively when the spring tides attack beaches, berms, and foredunes. Also involved in the transformation of coastal dunes are factors of human agency. The extent, speed, and pattern of their morphological changes are a function of land-use pattern. The reclamation of swale and the exploitation of sands as construction material and silica sand, for example, ruin the feature of coastal dunes.

A Study on the Determination of Starting Head by Comparing The Generating Power in Single Action Tidal Power Plant (발전량 비교를 통한 창조식 조력발전의 기동낙차 결정에 관한 연구)

  • Kim, Hyun-Han;Kim, Kwang-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.680-687
    • /
    • 2018
  • Because of its predictability of the energy cycle and huge scale power output, the ocean energy from tidal power utilization has always received attention as a great energy source, even though its development cost, including the embankment construction, is so much higher than that of any other energy source. Nevertheless, nowadays many projects are being planned on account of institutional support from the government and the recent advance of construction technology. In Korea, the new industry field operating and managing the tidal power plant has already opened. But we are facing a number of problems for optimal operation of tidal power plant that are a lack of operation experience and a skill of professional management and others. This paper suggests a novel way to determine the starting head of power generation by generating power comparison method For this new method, the paper discusses many factors including changing the volume of the basin, the number of operating turbines and gates and forecasting the tidal amplitude and the characteristic curve of turbine and gate. Finally we verified that it can increase about 2% an annual power generation compared with the conventional method using the original operational function made in the plant design process.

Penetration Behavior of Spilled Fuel Oil C into Coastal Sandy Beach (해양에서 유출된 C중유의 토양 침투 거동)

  • Cheong Cheong-Jo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.3
    • /
    • pp.37-44
    • /
    • 2003
  • To know the penetration behavior of spilled oil into sandy beach sediment is very important, because the penetration depth of the stranded oil into the sediments is one of the most significant information to know effect of spilled oil on biological communities and to set up cleaning method. The purpose of this study is to clarify the effects of wave and/or tidal action on penetration of spilled oil into the sediments and to clarify main factor in oil penetration using sandy beach model. Specific conclusions derived from this study are as follows. Spilled fuel oil C penetrated into the sediments only by falling tidal fluctuation and not by wave action on sandy beach environment, and the first tide is most important for the penetration of stranded oil. Over 80% of bulk fraction in penetrated fuel oil C was concentrated to the top 2 cm sediment-layer. Moreover, the penetration of stranded oil into the sandy beach sediments was strongly correlated with the oil viscosity affected by temperature.

  • PDF

Laboratory Study for the Identification of Parameters affecting the Penetration Behavior of Spilled crude oil in a Coastal Sandy Beach (해양에서 유출된 기름의 해변 토양 침투거동에 미치는 영향인자 규명 실험)

  • Cheong Jo, Cheong
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.1
    • /
    • pp.81-86
    • /
    • 2003
  • Understanding the penetration behavior of the spilled oil is very important to remove itself and to minimize its impact on intertidal biological communities by earlier treatment of the oil. The purpose of this study is to clarify the effects of wave and tidal actions on the penetration of spilled oil and to evaluate main factors of oil penetration using a sandy-beach model. Infiltration processes into the sediments showed significant difference between seawater and crude oil. Seawater was infiltrated by both wave action and tidal fluctuation into the sediments in sandy beach. However, spilled crude oil penetrated into the sediments only by falling tides and not by wave action, and the first tide is most important for the penetration of stranded oil. Over 70% of bulk fraction in penetrated crude oil was concentrated to the top 2 cm sediment-layer when spilled oil volume was 1 L/$\textrm{m}^2$. Moreover, the penetration of stranded oil into the sandy beach sediments was strongly correlated with the oil viscosity affected by temperature.