• Title/Summary/Keyword: total ozone

Search Result 251, Processing Time 0.028 seconds

Monitoring and Long-term Trend of Total Column Ozone from Dobson Spectrophotometer in Seoul (1985~2017) (돕슨 분광광도계를 이용한 서울 상공의 오존층 감시 및 장기변화 경향(1985~2017))

  • Park, Sang Seo;Cho, Hi Ku;Koo, Ja-Ho;Lim, Hyunkwang;Lee, Hana;Kim, Jhoon;Lee, Yun Gon
    • Atmosphere
    • /
    • v.29 no.1
    • /
    • pp.13-20
    • /
    • 2019
  • Since 1985, the Dobson Spectrophotometer has been operated at Yonsei University, and this instrument has monitored the daily representative total ozone in Seoul. Climatological value for total ozone in Seoul is updated by using the daily representative observation data from 1985 to 2017. After updating the daily representative total ozone data, seasonal and inter-annual variation of total ozone in Seoul is also estimated after calculating inter-comparison between ground (Dobson Spectrophotometer) and satellite [Total Ozone Mapping Spectrometer (TOMS) and Ozone Monitoring Instrument (OMI)] observations. The global average of total ozone measured by satellite is 297 DU, and its recent amount is about 3.5% lower than the global amount in 1980s. In Seoul, daily representative total ozone is ranged from 225 DU to 518 DU with longterm mean value of 324.3 DU. In addition, monthly mean total ozone is estimated from 290 DU (October) to 362 DU (March), and yearly average of total ozone have been continuously increased since 1985. For the long-term trend of total ozone in Seoul, this study is considered the seasonal variation, Solar Cycle, and Quasi-Biennial Oscillation. In addition to the natural oscillation effect, this study also considered to the long-term variation of sudden increase of total ozone due to the secondary ozone peak. By considering these natural effects, the long-term total ozone trends from 1985 to 2017 are estimated to be 1.11~1.46%/decade.

Characteristics on the Variations of the Total Ozone over Pohang (1994-2004) using the Brewer Spectrophotometer and TOMS

  • Hong Gi-Man;Choi Byoung-Cheol;Goo Tae-Young;Lim Jae-Chul;Lim Byung-Sook;Baek Moon-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.388-391
    • /
    • 2005
  • The characteristics of the total ozone variations measured by the ground-based Brewer Ozone Spectrophotometer and the Total Ozone Mapping Spectrometer (TOMS) over Pohang are statistically examined from January 1994 to December 2004. First of all, in the correlation analysis of the total ozone measured from the Brewer Ozone Spectrophotometer and the TOMS, the correlation coefficient was 0.88 and the used data were 2190. The annual mean value of the total ozone is 311 DU with the standard deviation of 13 DU. The maximum and the minimum value were found in March (343 DU) and in September (282 DU), respectively. It was also revealed that the longest seasonal variation is in Spring (341 DU) and the smallest is in Autumn (283 DU). The time series data of the total ozone indicates that the annual variation is significant and the variations for three months and six months are relatively weak. Finally, the annual mean total ozones in Pohang (Brewer), Seoul (Brewer) and Busan (TOMS) are 312 DU, 324 DU and 304 DU, respectively.

  • PDF

Intercomparison and evaluation of satellite-derived tropospheric ozone (인공위성을 이용한 대류권 오존 추정치 비교 및 검증)

  • Kim Jae-Hwan;Na Seon-Mi;M. J. Newchurch
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.123-124
    • /
    • 2003
  • Fishman and Larson (1987) derived tropical tropospheric column ozone by subtracting stratospheric column ozone measured by the Stratospheric Aerosol and Gas Experiment (SAGE) from total column ozone obtained by the Total Ozone Mapping Spectrometer (TOMS). Later, the Convective Cloud Differential (CCD) method (Ziemke et al., 1998) indicated stratospheric ozone is invariant with longitude and concluded the zonal variation of total ozone determines the zonal variation of tropospheric ozone. (omitted)

  • PDF

Characteristics and Prediction of Total Ozone and UV-B Irradiance in East Asia Including the Korean Peninsula (한반도를 포함한 동아시아 영역에서 오존전량과 유해자외선의 특성과 예측)

  • Moon, Yun-Seob;Seok, Min-Woo;Kim, Yoo-Keun
    • Journal of Environmental Science International
    • /
    • v.15 no.8
    • /
    • pp.701-718
    • /
    • 2006
  • The average ratio of the daily UV-B to total solar (75) irradiance at Busan (35.23$^{\circ}$N, 129.07$^{\circ}$E) in Korea is found as 0.11%. There is also a high exponential relationship between hourly UV-B and total solar irradiance: UV-B=exp (a$\times$(75-b))(R$^2$=0.93). The daily variation of total ozone is compared with the UV-B irradiance at Pohang (36.03$^{\circ}$N, 129.40$^{\circ}$E) in Korea using the Total Ozone Mapping Spectrometer (TOMS) data during the period of May to July in 2005. The total ozone (TO) has been maintained to a decreasing trend since 1979, which leading to a negative correlation with the ground-level UV-B irradiance doting the given period of cloudless day: UV-B=239.23-0.056 TO (R$^2$=0.52). The statistical predictions of daily total ozone are analyzed by using the data of the Brewer spectrophotometer and TOMS in East Asia including the Korean peninsula. The long-term monthly averages of total ozone using the multiplicative seasonal AutoRegressive Integrated Moving Average (ARIMA) model are used to predict the hourly mean UV-B irradiance by interpolating the daily mean total ozone far the predicting period. We also can predict the next day's total ozone by using regression models based on the present day's total ozone by TOMS and the next day's predicted maximum air temperature by the Meteorological Mesoscale Model 5 (MM5). These predicted and observed total ozone amounts are used to input data of the parameterization model (PM) of hourly UV-B irradiance. The PM of UV-B irradiance is based on the main parameters such as cloudiness, solar zenith angle, total ozone, opacity of aerosols, altitude, and surface albedo. The input data for the model requires daily total ozone, hourly amount and type of cloud, visibility and air pressure. To simplify cloud effects in the model, the constant cloud transmittance are used. For example, the correlation coefficient of the PM using these cloud transmissivities is shown high in more than 0.91 for cloudy days in Busan, and the relative mean bias error (RMBE) and the relative root mean square error (RRMSE) are less than 21% and 27%, respectively. In this study, the daily variations of calculated and predicted UV-B irradiance are presented in high correlation coefficients of more than 0.86 at each monitoring site of the Korean peninsula as well as East Asia. The RMBE is within 10% of the mean measured hourly irradiance, and the RRMSE is within 15% for hourly irradiance, respectively. Although errors are present in cloud amounts and total ozone, the results are still acceptable.

Temporal and Spatial Variability of the TOMS Total Ozone; Global Trends and Profiles (TOMS 오존전량의 시공간 변동; 전구적인 추세 및 연직 분포)

  • Yoo Jung-Moon;Jeong Eun-Joo
    • Journal of the Korean earth science society
    • /
    • v.26 no.3
    • /
    • pp.199-217
    • /
    • 2005
  • Using monthly total ozone data obtained from a Total Ozone Mapping Spectrometer (TOMS) onboard the Nimbus-7 and Earth Probe satellite, this study examined the trend in the total amount of global ozone during two periods: from 1979-1992 [Early period] and 1997-2002 [Latter period]. The Annual average of total ozone during the Early period was globally reduced by about 10 DU compared to the amount during the Latter, except in some areas between the equator and 20 N. Global trends of total ozone showed a decrease of -6.30 DU/decade during 1979-1992, and an increase of 0.12 DU/decade during 1997-2002. Its enhancement during the Latter period was especially noticeable in tropical areas. The EOF analyses of total ozone from this period indicated signs of temporal/spatial variability, associated with the phenomena of Quasi-Biennial Oscillation (QBO), Quasi-Triennial Oscillation (QTO), El Nino Southern Oscillation (ENSO), and volcanic eruption. Seasonal profiles of tropospheric ozone in the tropics obtained from ozonesondes, showed the spatial pattern of zonal wavenumber one. Overall, this study may be useful in analyzing possible causes in the variations of statospheric and tropospheric ozone.

Disinfection Effect of Chlorine, Chlorine Dioxide end Ozone on Total Coliform in Water

  • Lee, Yoonjin;Kyoungdoo Oh;Byongho Jun;Sangho Nam
    • Proceedings of the Korean Environmental Health Society Conference
    • /
    • 2003.06a
    • /
    • pp.140-143
    • /
    • 2003
  • This research was to determine and compare the inactivation of total coliform as the indicator organism with chlorine, chlorine dioxide and ozone for drinking water treatment. The inactivation of total coliform was experimentally analyzed for the dose of disinfectant, contact time, pH, Temperature and DOC. The experiments for the characterization of inactivation were performed in a series of batch processes with the total coliform as a general indicator organism based on chlorine, chlorine dioxide and ozone as disinfectants. The nearly 2.4, 3.0, 3.9 log inactivation of total coliform killed by injecting 1mg/L at 5 minutes for chlorine, chlorine dioxide and ozone. For the inactivation of 99.9%, Disinfectants required were 1.70, 1.00 and 0.60 mg/L for chlorine, chlorine dioxide and ozone, respectively. The bactericidal effects of disinfectants were decreased as the pH increased in the range of pH 6-9. The influence of pH change on the killing effect of chlorine dioxide was not strong, but that on ozone and free chlorine was sensitive. The bactericidal effects of the disinfectants were increased as the temperature increase. The activation energies were 36,053, 29,822, 24,906 J/mol of chlorine, chlorine dioxide, ozone for coliforms. The inactivation effects were shown in the lowest order of chlorine, chlorine dioxide and ozone.

  • PDF

The Variations of Stratospheric Ozone over the Korean Peninsula 1985~2009 (한반도 상공의 오존층 변화 1985~2009)

  • Park, Sang Seo;Kim, Jhoon;Cho, Nayeong;Lee, Yun Gon;Cho, Hi Ku
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.349-359
    • /
    • 2011
  • The climatology in stratospheric ozone over the Korean Peninsula, presented in previous studies (e.g., Cho et al., 2003; Kim et al., 2005), is updated by using daily and monthly data from satellite and ground-based data through December 2009. In addition, long-term satellite data [Total Ozone Mapping Spectrometer (TOMS), Ozone Monitoring Instrument (OMI), 1979~2009] have been also analyzed in order to deduce the spatial distributions and temporal variations of the global total ozone. The global average of total ozone (1979~2009) is 298 DU which shows a minimum of about 244 DU in equatorial latitudes and increases poleward in both hemispheres to a maximum of about 391 DU in Okhotsk region. The recent period, from 2006 to 2009, shows reduction in total ozone by 6% relative to the values for the pre-1980s (1979~1982). The long-term trends were estimated by using a multiple linear regression model (e.g., WMO, 1999; Cho et al., 2003) including explanatory variables for the seasonal variation, Quasi-Biennial Oscillation (QBO) and solar cycle over three different time intervals: a whole interval from 1979 to 2009, the former interval from 1979 to 1992, and the later interval from 1993 to 2009 with a turnaround point of deep minimum in 1993 is related to the effect of Mt. Pinatubo eruption. The global trend shows -0.93% $decade^{-1}$ for the whole interval, whereas the former and the later interval trends amount to -2.59% $decade^{-1}$ and +0.95% $decade^{-1}$, respectively. Therefore, the long-term total ozone variations indicate that there are positive trends showing a recovery sign of the ozone layer in both North/South hemispheres since around 1993. Annual mean total ozone (1985~2009) is distributed from 298 DU for Jeju ($33.52^{\circ}N$) to 352 DU for Unggi ($42.32^{\circ}N$) in almost zonally symmetric pattern over the Korean Peninsula, with the latitudinal gradient of 6 DU $degree^{-1}$. It is apparent that seasonal variability of total ozone increases from Jeju toward Unggi. The annual mean total ozone for Seoul shows 323 DU, with the maximum of 359 DU in March and the minimum of 291 DU in October. It is found that the day to day variability in total ozone exhibits annual mean of 5.7% in increase and -5.2% in decrease. The variability as large as 38.4% in increase and 30.3% in decrease has been observed, respectively. The long-term trend analysis (e.g., WMO, 1999) of monthly total ozone data (1985~2009) merged by satellite and ground-based measurements over the Korean Peninsula shows increase of 1.27% $decade^{-1}$ to 0.80% $decade^{-1}$ from Jeju to Unggi, respectively, showing systematic decrease of the trend magnitude with latitude. This study also presents a new analysis of ozone density and trends in the vertical distribution of ozone for Seoul with data up to the end of 2009. The mean vertical distributions of ozone show that the maximum value of the ozone density is 16.5 DU $km^{-1}$ in the middle stratospheric layer between 24 km and 28 km. About 90.0% and 71.5% of total ozone are found in the troposphere and in the stratosphere between 15 and 33 km, respectively. The trend analysis reconfirms the previous results of significant positive ozone trend, of up to 5% $decade^{-1}$, in the troposphere and the lower stratosphere (0~24 km), with negative trend, of up to -5% $decade^{-1}$, in the stratosphere (24~38 km). In addition, the Umkehr data show a positive trend of about 3% $decade^{-1}$ in the upper stratosphere (38~48 km).

Estimation of Vertical Profiles and Total Amount of Ozone Using Two-Dimensional Photochemical Transfer Model During the Period of 1995-1996 at Pohang (2차원 광화학수송모델을 이용한 포항지역의 1995-1996년 기간동안 오존의 연직 프로파일 및 전량 추정)

  • Moon, Yun-Seob
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.271-285
    • /
    • 2006
  • A two-dimensional photochemical transport model (2D PTM) is simulated to describe the transport and chemical reaction of ozone related to aerosols in the troposphere and stratosphere. The vertical profiles and total amounts of ozone, which are advected by both residual Eulerian circulation and the adiabatic circulation under certain circumstance, have been compared with the observation data such as ozonesondes, Brewer spectrometer, the Upper Atmosphere Research Satellite (UARS), and the Total Ozone Mapping Spectrophotometer (TOMS). As a result, we find that the observed distribution of ozone Is adequately reproduced in the model at middle and high latitude in the Northern Hemisphere as well as at Phang ($36^{\circ}\;02'N,\;129^{\circ}\;23'E$) in South Korea. In particular, the 2D PTM is well simulated in the ozone decrease due to the Pinatubo volcanic eruption in 1991. However, ozone mixing ratio are more underestimated than those of UARS and ozonesondes, because are very sensitive to the latitude of transport across the tropopause associated with both Rummukainen errors and off-line model. Relative mean bias errors and relative root mean square errors of ozone calculations using the 2D PTM are shown within${\pm}10%$, respectively.

Enhancement of Ozone and Carbon Monoxide Associated with Upper Cut-off Low during Springtime in East Asia

  • Moon, Yun-Seob;Drummond, James R.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.475-489
    • /
    • 2010
  • In order to verify the enhancement of ozone and carbon monoxide (CO) during springtime in East Asia, we investigated weather conditions and data from remote sensors, air quality models, and air quality monitors. These include the geopotential height archived from the final (FNL) meteorological field, the potential vorticity and the wind velocity simulated by the Meteorological Mesoscale Model 5 (MM5), the back trajectory estimated by the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model, the total column amount of ozone and the aerosol index retrieved from the Total Ozone Mapping Spectrometer (TOMS), the total column density of CO retrieved from the Measurement of Pollution in the Troposphere (MOPITT), and the concentration of ozone and CO simulated by the Model for Ozone and Related Chemical Tracers (MOZART). In particular, the total column density of CO, which mightoriginate from the combustion of fossil fuels and the burning of biomass in China, increased in East Asia during spring 2000. In addition, the enhancement of total column amounts of ozone and CO appeared to be associated with both the upper cut-off low near 500 hPa and the frontogenesis of a surface cyclone during a weak Asian dust event. At the same time, high concentrations of ozone and CO on the Earth's surface were shown at the Seoul air quality monitoring site, located at the surface frontogenesis in Korea. It was clear that the ozone was invaded by the downward stretched vortex anomalies, which included the ozone-rich airflow, during movement and development of the cut-off low, and then there was the catalytic photochemical reaction of ozone precursors on the Earth's surface during the day. In addition, air pollutants such as CO and aerosol were tracked along both the cyclone vortex and the strong westerly as shown at the back trajectory in Seoul and Busan, respectively. Consequently, the maxima of ozone and CO between the two areas showed up differently because of the time lag between those gases, including their catalytic photochemical reactions together with the invasion from the upper troposphere, as well as the path of their transport from China during the weak Asian dust event.

Hematological and histological changes of black porgy Acanthopagrus schlegeli in ozonated recirculating systems

  • Kim, Pyong-Kih;Kim, Jae-Won;Park, Jeonghwan
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.1
    • /
    • pp.2.1-2.8
    • /
    • 2018
  • This study evaluated hemato-histological changes of black porgy in recirculating aquaculture systems (RAS) with three different ozone doses (no ozone, 20 g, and $40g\;ozone/kg\;feed\;day^{-1}$). During the 44-day study, black porgy did not show significant behavior changes or mortalities in both the ozonated systems displaying average total residual oxidants concentrations of 0.12 and 0.25 mg/L. There were no differences in growth and blood parameters among the systems. However, histological alterations on gills and livers were observed in both the treatment systems. In the higher ozone dose, signs of cellular damage were more apparent. Although the ozone doses did not manifest a serious adverse effect on growth and hematological observations in this short-term study, an ozone dose should not exceed $20g\;ozone/kg\;feed\;day^{-1}$ for black porgy based on the histological result. In order to use ozone in a seawater RAS, further studies will be needed to evaluate long-term effects of total residual oxidants.