• Title/Summary/Keyword: total stresses

Search Result 375, Processing Time 0.021 seconds

Comparative study by the finite element method of three activities of a wearer of total hip prosthesis during the postoperative period

  • Abdelmadjid Moulgada;Mohammed El Sallah Zagane;Murat Yaylaci;Ait Kaci Djafar;Sahli Abderahmane;Sevval Ozturk;Ecren Uzun Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.87 no.6
    • /
    • pp.575-583
    • /
    • 2023
  • The postoperative period for a carrier of total hip prosthesis (THP), especially in the first months, remains the most difficult period for a patient after each operation, even if traumatologist surgeons want the relief and success of their operations. In this investigation, selected three of the daily activities for a wearer of total hip replacement (THR), such as sitting in a chair, lifting a chair, and going downstairs, and was performed a numerical simulation by finite elements based on experimental data by Bergmann (Bergmann 2001) in terms of effort for each activity. Different stresses have been extracted, and a detailed comparison between two activities with different induced stresses such as normal, tensile, and compressive shear stresses.

Numerical Simulation of Flow in a Total Artificial Heart (인공심장내의 혈류유동의 컴퓨터 시뮬레이션)

  • ;K.B
    • Journal of Biomedical Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.87-96
    • /
    • 1992
  • In thIns paper, a numerical simulation of steady laminar and turbulent flow in a two dimensional model for the total artificial heart is'presented. A trlleaflet polyurethane valve was simulated at the outflow orifice while the Inflow orifice had a trileaflet or a flap valve. The finite analytic numerical method was employed to obtain solutions to the governing equations in the Cartesian coordinates. The closure for turbulence model was achieved by employing the k-$\varepsilon$-E model. The SIMPLER algo rithm was used to solve the problem in primitive variables. The numerical solutions of the slulated model show that regions of relative stasis and trapped vortices were smaller within the ventricular chamber with the flap valve at the Inflow orifice than that with the trileaflet valve. The predicted Reynolds stresses distal to the inflow valve within the ventricular chamber were also found to be smaller wlth the flap valve than with the trlleaflet valve. These resu1ts also suggest a correlation be- tween high turbulent stresses and the presence of thrombus In the vicinity of the valves in the total artificial hearts. The computed velocity vectors and trubulent stresses were comparable with previ ously reported in vitro measurements in artificial heart chambers. Analysis of the numerical solo talons suggests that geometries similar to the flap valve(or a tilting disc valve) results in a better flow dynamics within the total artificial heart chamber compared to a trileaflet valve.

  • PDF

A FEM Analysis for Acetabular Component with Negative Poisson's Ratio in Total Hip Arthroplasty

  • 최재봉
    • Computational Structural Engineering
    • /
    • v.8 no.4
    • /
    • pp.17-23
    • /
    • 1995
  • Based on the present FEM study for negative Poisson's-ratio UHMWPE, the following conclusions seem expected. 1) Negative Poisson's-ratio UHMWPE transfers less stresses to the subchondral or peripheral iliac bone, compared to the conventional UHMWPE with Poission's-ratio. 2) Negative Poisson's-ratio cup reduces stresses in UHMWPE cup itself as well as metal backing, and subchondral bone. 3) The reduction in periacetabular mechanical stresses would significantly reduce the rate of fatigue failure and consequently reduce the incidence of aseptic loosening of the cup due to wear or bone resorption.

  • PDF

EEFORMATION BEHAVIOR OF STAINLESS STEEL-CLAD ALUMINUM SHEET METALS UNDER UNIAXIAL TENSION (스테인리스 강 클리드 알루미늄 판재의 일축인장시 변형거동)

  • 최시훈;김근환;오규환;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1995.10a
    • /
    • pp.69-75
    • /
    • 1995
  • The deformation behavior of stainless steel-clad aluminum sheet metals under uniaxial tension has been investigated. The differences in mechanical properties such as elastic modulus, flow stress and plastic strain ratio, of component layers of the composite sheet gave rise to warping of the tensile specimens. The warping has been analyzed by FEM and the total force and momentum equilibria. The analyzed radii of curvature of the warped specimens were smaller than the measured data possibly due to elastic recovery during unloading. The differences in mechanical properties may also give rise to transverse stresses in the component layers. The transverse stresses have been analyzed on the assumption of isostrain and by the FEM in which the warping has been taken into account. The transverse stresses calculated by the FEM were lower than those by the isostrain hypothesis due to stress relaxation by the warping and turned out to be negligible compared with the longitudinal stresses. Consequently, the flow stresses of the composite sheets follow the rule of mixtures.

  • PDF

Study on Time of Mobile Game and Stresses Reduction of University Students (대학생의 스트레스 감소와 모바일 게임시간에 관한 연구)

  • Jo, Eun-Hyeon;Lee, Dong-Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.2
    • /
    • pp.138-144
    • /
    • 2015
  • Recent university students are under a lot of stresses due to academic performance, employment, and anxiety about the future in the fierce competition. Mobile games can be used as a plan which can reduce the stresses of these students. However, if they play too long the games, it will cause another big problems. In this paper, we experimented to look for the best mobile game time to alleviate the stresses of university students as follows. First, we chose 16 people which have more stress load than the average student through stress tests by the basic diagnosis questionnaire. Second, we did total eight experiments on the stresses of the subjects in the study. That is, the experiment was carried out once before the test, 6 times for the mobile game (60 minutes), and once before the experiment. Third, we did T-test and multivariate analysis on the collecting data. As a result, it is proved that the mobile game for about 20 minutes could derive the effect on reducing stresses.

Time-dependent stresses and curvatures in cracked R.C. sections under working loads

  • Al-Zaid, Rajeh Z.
    • Structural Engineering and Mechanics
    • /
    • v.18 no.3
    • /
    • pp.363-376
    • /
    • 2004
  • The present study provides a relatively simple and accurate analytical model for the prediction of time-dependent stresses and curvatures of cracked R.C. sections under working loads. A more simplified solution is also provided. The proposed models are demonstrated by considering a numerical example and conducting a parametric study on the effects of relevant R.C. design parameters. In contrary to tension reinforcement, the compression reinforcement is found to contribute significantly in reducing tensile stresses in tension steel and in reducing the total section curvatures. The good accuracy of the proposed approximate solution opens a new vision towards a simple yet accurate model for the prediction of time-dependent effects in R.C. structures.

A Study on the Improvement of Stress Field Analysis in a Domain Composed of Dissimilar Materials

  • Song, Kee-Nam;Lee, Jin-Seok
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.202-211
    • /
    • 1998
  • Interfacial stresses at two-material interfaces and initial displacement field over the entire domain are obtained by modifying the potential energy functional with a penalty function, which enforces continuity of the stresses at the interface of two materials. Based on the initial displacement field and interfacial stresses, a new methodology to generate a continuous stress field over the entire domain has been proposed by combining the modified projection method of stress-smoothing and Loubignac's iterative method of improving the displacement field. Stress analysis is carried out on two examples made of dissimilar materials : one is a two-material cantilever composed of highly dissimilar materials and the other is a zirconium-lined cladding tube made of slightly dissimilar materials. Results of the analysis show that the proposed method provides an improved continuous stress field over the entire domain, and accurately predicts the nodal stresses at the interface, while the conventional displacement-based finite element method produces significant stress discontinuities at the interface. In addition, the total strain energy evaluated from the improved continuous stress field converges to the exact value in a few iterations.

  • PDF

Design Loads on Railway Substructure: Sensitivity Analysis of the Influence of the Fastening Stiffness

  • Giannakos, Konstantinos
    • International Journal of Railway
    • /
    • v.7 no.2
    • /
    • pp.46-56
    • /
    • 2014
  • The superstructure of the railway track undertakes the forces that develop during train passage and distributes them towards its seating. The track panel plays a key role in terms of load distribution, while at the same time it maintains the geometrical distance between the rails. The substructure and ballast undergo residual deformations under high stresses that contribute to the deterioration of the so-called geometry of the track. The track stiffness is the primary contributing factor to the amount of the stresses that develop on the substructure and is directly influenced by the fastening resilience. Four methods from the international literature are used in this paper to calculate the loads and stresses on the track substructure and the results are compared and discussed. A parametric investigation of the stresses that develop on the substructure of different types of railway tracks (i.e. balastless vs ballasted) is performed and the results are presented as a function of the total static track stiffness.

Isoform-Specific Responses of Superoxide Dismutase to Oxidative Stresses and Hormones in Parquat-Tolerant Rehmannia glutinosa

  • Jamal, Arshad;Yoo, Nam-Hee;Yun, Song-Joong
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.8-12
    • /
    • 2007
  • All accessions of Rehmannia glutinosa show the unique characteristic of intrinsic tolerance to paraquat. The higher level of endogenous superoxide dismutase(SOD) activity and its increase upon paraquat treatment indicated the involvement of SOD in the tolerance mechanism to paraquat in R. glutinosa. In this study, we examined the isoform-specific response of SOD to oxidative stresses and hormones. Six SOD isoforms were found in the leaf, and they were identified as two MnSODs(named MnSOD I and MnSOD II, in order of increasing mobility), one FeSOD and three Cu/ZnSODs(named Cu/ZnSOD I, Cu/ZnSOD II, and Cu/ZnSOD III, in order of increasing mobility). MnSOD I, MnSOD II, FeSOD, Cu/ZnSOD I, Cu/ZnSOD II, and Cu/ZnSOD III, contributed to 4, 11, 7, 15, 30, and 32% of the total SOD activity, respectively. Total SOD activity levels in the leaf were increased by 4, 24, and 21% by paraquat, salicylic acid(SA), and yeast extract(YE), respectively, but little by ethephon. Six SOD isoforms responded differentially to these stresses and hormones. The activities of all the isoforms were increased by YE and SA except that of MnSOD I which was decreased by SA. The activities of MnSOD I, FeSOD, and CuZnSOD I were increased by paraquat. These results suggest that amelioration of oxidative stresses by SOD is fine-tuned by the differential expression of isoforms in R. glutinosa.

  • PDF

Numerical simulation of the total hip prosthesis under static and dynamic loading (for three activities)

  • Mohammed El Sallah Zagane;Abdelmadjid Moulgada;Murat Yaylaci;Sahli Abderahmen;Mehmet Emin Ozdemir;Ecren Uzun Yaylaci
    • Structural Engineering and Mechanics
    • /
    • v.86 no.5
    • /
    • pp.635-645
    • /
    • 2023
  • This study aims to simulate the mechanical behavior of the total prosthesis model of Charnley (CMK3) by the 3D finite element method and to determine the state of the stresses in the femoral components (prosthesis, cement, and bone). The components are subjected to a dynamic load due to three activities (normal walking, climbing stairs, and standing up a chair). Static loading is by selecting the maximum load for the same activities mentioned. The results show that the maximum stresses in the proximal part of the cement are very important. Moreover, new results obtained for different parameters were discussed in detail. It is understood that current research provides important lessons for the surgeon to contribute to the clinical diagnosis of durable implantations and a better understanding of the process of bone remodeling and bone prosthesis.