• Title/Summary/Keyword: totally geodesic foliation

Search Result 4, Processing Time 0.02 seconds

METRIC FOLIATIONS ON HYPERBOLIC SPACES

  • Lee, Kyung-Bai;Yi, Seung-Hun
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.1
    • /
    • pp.63-82
    • /
    • 2011
  • On the hyperbolic space $D^n$, codimension-one totally geodesic foliations of class $C^k$ are classified. Except for the unique parabolic homogeneous foliation, the set of all such foliations is in one-one correspondence (up to isometry) with the set of all functions z : [0, $\pi$] $\rightarrow$ $S^{n-1}$ of class $C^{k-1}$ with z(0) = $e_1$ = z($\pi$) satisfying |z'(r)| ${\leq}1$ for all r, modulo an isometric action by O(n-1) ${\times}\mathbb{R}{\times}\mathbb{Z}_2$. Since 1-dimensional metric foliations on $D^n$ are always either homogeneous or flat (that is, their orthogonal distributions are integrable), this classifies all 1-dimensional metric foliations as well. Equations of leaves for a non-trivial family of metric foliations on $D^2$ (called "fifth-line") are found.

CHARACTERIZATIONS ON GEODESIC GCR-LIGHTLIKE SUBMANIFOLDS OF AN INDEFINITE KAEHLER STATISTICAL MANIFOLD

  • Rani, Vandana;Kaur, Jasleen
    • Honam Mathematical Journal
    • /
    • v.44 no.3
    • /
    • pp.432-446
    • /
    • 2022
  • This article introduces the structure of GCR-lightlike submanifolds of an indefinite Kaehler statistical manifold and derives their geometric properties. The characterizations on totally geodesic, mixed geodesic, D-geodesic and D'-geodesic GCR-lightlike submanifolds have also been obtained.

CR-PRODUCT OF A HOLOMORPHIC STATISTICAL MANIFOLD

  • Vandana Gupta;Jasleen Kaur
    • Honam Mathematical Journal
    • /
    • v.46 no.2
    • /
    • pp.224-236
    • /
    • 2024
  • This study inspects the structure of CR-product of a holomorphic statistical manifold. Findings concerning geodesic submanifolds and totally geodesic foliations in the context of dual connections have been demonstrated. The integrability of distributions in CR-statistical submanifolds has been characterized. The statistical version of CR-product in the holomorphic statistical manifold has been researched. Additionally, some assertions for curvature tensor field of the holomorphic statistical manifold have been substantiated.

SEMI-SLANT LIGHTLIKE SUBMERSIONS WITH TOTALLY UMBILICAL FIBRES

  • Gaurav Sharma;Sangeet Kumar;Dinesh Kumar Sharma
    • Honam Mathematical Journal
    • /
    • v.46 no.3
    • /
    • pp.452-472
    • /
    • 2024
  • We introduce the study of a semi-slant lightlike submersion from an indefinite Kaehler manifold onto an r-lightlike manifold. After giving the definition of a semi-slant lightlike submersion, we establish the existence Theorems for this class of lightlike submersions. Then, we derive the integrability conditions for the distributions D1, D2 and ∆ associated with a semi-slant lightlike submersion. Consequently, we find some necessary and sufficient conditions for the foliations determined by the distributions D1, D2 and ∆. Subsequently, we examine the geometry of totally umbilical fibres of a semi-slant lightlike submersion.