• Title/Summary/Keyword: traveling pluviation

Search Result 2, Processing Time 0.014 seconds

A curtain traveling pluviator to reconstitute large scale sand specimens

  • Kazemi, Majid;Bolouri, Jafar B.
    • Geomechanics and Engineering
    • /
    • v.14 no.2
    • /
    • pp.131-139
    • /
    • 2018
  • The preparation of repeatable and uniformly reconstituted soil specimens up to the specified conditions is an essential requirement for the laboratory tests. In this study for large samples replication, the simultaneous usage of the traveling pluviation and curtain raining technique is used to develop a new method, called the curtain travelling pluviator (CTP). This simple and cost effective system is based on the air pluviation approach, whilst reducing the sample production time, can reproduce uniform samples with relative densities ranging from 25% to 96%. In order to investigate the resulting suitability and uniformity from the proposed method, a series of tests is performed. The effect of curtain traveling velocity, curtain width, drop height, and flow rate on the parameters of the sample is thoroughly investigated. Increase in the curtain velocity and drop height leads to the increase in relative density for the sand specimen. Increase in curtain width typically resulted in the reduction of relative density. Test results reveal that the terminal drop height for the sand specimen in this study is more than 500 mm. Relative density contour lines are presented that can be utilized in optimizing the drop height and curtain width parameters. Sample uniformity in the vertical and horizontal orientation is investigated through the sampling containers. Increasing relative density tends to result in the higher sample repeatability and uniformity.

Assessment of portable traveling pluviator to prepare reconstituted sand specimens

  • Dave, Trudeep N.;Dasaka, S.M.
    • Geomechanics and Engineering
    • /
    • v.4 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • Air pluviation method is widely adopted for preparation of large, uniform and repeatable sand beds of desired densities for laboratory studies to simulate in-situ conditions and obtain test results which are highly reliable. This paper presents details of a portable traveling pluviator recently developed for model sand bed preparation. The pluviator essentially consisted of a hopper, orifice plates for varying deposition intensity, combination of flexible and rigid tubes for smooth travel of material, and a set of diffuser sieves to obtain uniformity of pluviated sand bed. It was observed that sand beds of lower relative density can be achieved by controlling height of fall, whereas, denser sand beds could be obtained by controlling deposition intensity. Uniformity of pluviated sand beds was evaluated using cone penetration test and at lower relative densities minor variation in density was observed with depth. With increase in relative density of sand bed higher repeatability of uniform pluviation was achieved.