• Title/Summary/Keyword: underground cavern

Search Result 172, Processing Time 0.02 seconds

A Study on the Influence of Behavior of Underground Cavern to Cavern Size and Joint Orientation (공동 규모와 절리 방향성이 지하공동의 거동에 미치는 영향에 대한 연구)

  • Kim, Sang-Hwan;Shin, Beom-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.1
    • /
    • pp.84-92
    • /
    • 2010
  • This paper presents the influence of the underground structure (such as cavern and tunnels) behavior according to the rock joint orientation and underground cavern size. In order to perform this research, numerical and experimental studies are carried out. Stress aspect was assessed by quantitative according two kind of factor. In the experimental study, the laboratory model tests are performed in the several ground conditions with different underground cavern size. The results obtained from the model tests are also verified and evaluated using the numerical analysis. Due to the underground cavern, it is found from this study that the stresses developed in archcrown, side wall of underground are increased with increasing the underground cavern size. It is also investigated that the rock joint direction is one of main influence factor as risk factor, to maintain the underground cavern stability. It may be expected that this research will provide the very useful information to evaluate the underground cavern stability.

Status and Issues for Underground Space Development in Singapore (싱가포르 지하공간 개발의 현황 및 이슈)

  • Lee, Hee Suk;Zho, Yingxin
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.304-324
    • /
    • 2018
  • Singapore government is strongly promoting the development and utilization of underground space in national level due to the nature of the city state which lacks the land. As well as conventional underground utilization in shallow depth such as metro and underground roads, large rock cavern utilization has been started after the successful completion of the underground ammunition depot in the rock, and Jurong Rock Cavern, the second large underground cavern project has just been completed. In this paper, after evaluating the conditions of the underground development in rock mass through the analysis of the geology of Singapore, the history and current status of underground development are examined. Several creative development plans from Singapore government such as underground reservoirs, underground automation logistics systems and underground warehouses storage etc. are introduced with technical issues. This paper also discusses the problems and issues related to the development of large underground space in rock mass in Singapore. It is expected that such active development of underground space in Singapore can give many opportunities and also challenges for rock engineering and industry in the future.

Design of initial support required for excavation of underground cavern and shaft from numerical analysis

  • Oh, Joung;Moon, Taehyun;Canbulat, Ismet;Moon, Joon-Shik
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.573-581
    • /
    • 2019
  • Excavation of underground cavern and shaft was proposed for the construction of a ventilation facility in an urban area. A shaft connects the street-level air plenum to an underground cavern, which extends down approximately 46 m below the street surface. At the project site, the rock mass was relatively strong and well-defined joint sets were present. A kinematic block stability analysis was first performed to estimate the required reinforcement system. Then a 3-D discontinuum numerical analysis was conducted to evaluate the capacity of the initial support and the overall stability of the required excavation, followed by a 3-D continuum numerical analysis to complement the calculated result. This paper illustrates the application of detailed numerical analyses to the design of the required initial support system for the stability of underground hard rock mining at a relatively shallow depth.

Physical model test of Jintan underground gas storage cavern group

  • Chen, Yulong;Wei, Jiong
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.45-49
    • /
    • 2022
  • In the present study, a physical model was built for the Jintan underground gas storage cavern group according to the similarity theory. In this regard, four ellipsoid caverns were built with scaled in-situ stresses and internal pressure. Then the stability of underground caverns was analyzed. The obtained results demonstrate that loss of internal pressure adversely affects the safety of caverns and attention should be paid during the operation of gas storage.

A comparative study on stability evaluation of caverns by 2D continuum analysis in terms of shape factor (2차원 연속체 해석에 의한 지하공동 형상비별 안정성 평가 비교)

  • You, Kwang-Ho;Jung, Ji-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.193-205
    • /
    • 2008
  • The construction of underground structures such as oil and food storage caverns are recently increasing in our country. The stability of those underground caverns are greatly influenced by their shape and size. In this study therefore, the effect that the shape of an underground cavern have on its stability were analyzed in terms of safety factor. To this end, caverns with 5 different shapes were investigated and sensitivity analyses were performed based on rock class, overburden, and lateral earth pressure coefficient. The proper amount of shotcrete and rockbolt as supports of a cavern was also assumed based on the shape and site of the cavern and rock conditions. This study is expected to be helpful in designing and evaluating the stability of caverns in future.

  • PDF

The effect of the shape factor of an underground cavern in good rock conditions on its stability by 2D discontinuum analysis (2차원 불연속체 해석에 의한 양호한 암반 내의 지하공동 형상비가 안정성에 미치는 영향 검토)

  • You, Kwang-Ho;Jung, Ji-Suug
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.2
    • /
    • pp.189-198
    • /
    • 2009
  • Recently the concern about the construction of underground structures such as oil and food storage caverns is increasing in Korea and abroad. The stability of those underground caverns is greatly influenced by shape factor and the size of excavation area as well as the joint conditions. In this study, therefore, the effect of the shape factor of an underground cavern on its stability was analyzed in terms of safety factor. To this end, four different shape factors of a cavern excavated in good rock conditions were investigated and sensitivity analyses were performed based on overburden, lateral earth pressure coefficient, joint spacing, properties, and orientation. The stability of a cavern is evaluated in terms of safety factor estimated numerically based on the shear strength reduction technique. In future, this study is expected to be helpful in designing and evaluating the stability of caverns excavated in discontinuous rock masses.

Rock Cavern for Radioactive Waste Disposal and Underground Research (방사성폐기물 동굴처분과 지하시험시설)

  • Kang Byong Mu
    • Explosives and Blasting
    • /
    • v.9 no.2
    • /
    • pp.19-30
    • /
    • 1991
  • The trend of Radio active waste disposal project is generally to choose The Rock Cavern type because it is the most safest and easy to get concent from The neighbor hood. On the Construction of rock Cavern for R -A. W.0 has to take care follows ; The first of all, to survey rock crack formation. 2nd, The Movement of Underground water. 3rd, Nuclear and Geochemical problems. 4th, to examine physical feature of rocks ets.

  • PDF

Predictive models of ultimate and serviceability performances for underground twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • v.10 no.2
    • /
    • pp.175-188
    • /
    • 2016
  • The construction of a new cavern modifies the state of stresses and displacements in a zone around the existing cavern. For multiple caverns, the size of this influence zone depends on the ground type, the in situ stress, the cavern span and shape, the width of the pillar separating the caverns, and the excavation sequence. Performances of underground twin caverns can be unsatisfactory as a result of either instability (collapse) or excessive displacements. These two distinct failures should be prevented in design. This study simulated the ultimate and serviceability performances of underground twin rock caverns of various sizes and shapes. The global factor of safety is used as the criterion for determining the ultimate limit state and the calculated maximum displacement around the cavern opening is adopted as the serviceability limit state criterion. Based on the results of a series of numerical simulations, simple regression models were developed for estimating the global factor of safety and the maximum displacement, respectively. It was proposed that a proper pillar width can be determined based on the threshold influence factor value. In addition, design charts with regard to the selection of the pillar width for underground twin rock caverns under similar ground conditions were also developed.

Visualization and Optimization of Construction Schedule Considering the Geological Conditions in the Complicated Underground Cavern (지하비축기지 건설시 지질조건을 고려한 건설공정의 가시화와 최적화 사례)

  • Choi, Yong-Kun;Park, Joon-Young;Lee, Sung-Am;Kim, Ho-Yeong;Lee, Hee-Suk;Lee, Seung-Cheol
    • Tunnel and Underground Space
    • /
    • v.19 no.3
    • /
    • pp.167-173
    • /
    • 2009
  • Underground storage cavern is known as the most complicated underground project because of the complexity of construction schedule, tunnel size, and geological problems. In order to optimize the construction schedule of underground storage cavern, two up-to-date technologies were applied. The first technology was 3 dimensional visualization of complicated underground structures, and the second was 4 dimensional simulation considering construction resources, geological conditions and construction schedule. This application case shows that we can achieve optimized construction schedule in the ways to optimize the number of work teams, fleets, the sequence of tunnel excavation, the commencement time of excavation and the hauling route of materials and excavated rocks. 3 dimensional modeling can help designer being able to understand the status of complicated underground structures and to investigate the geological data in the exact 3 dimensional space. Moreover, using 4 dimensional simulation, designer is able to determine the bottle neck point which appear during hauling of excavated rocks and to investigate the daily fluctuation in cost.

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.