• Title/Summary/Keyword: unit machining operation

Search Result 18, Processing Time 0.129 seconds

Development of a Multiple Monitioring System for Intelligence of a Machine Tool -Application to Drilling Process- (공작기계 지능화를 위한 다중 감시 시스템의 개발-드릴가공에의 적용-)

  • Kim, H.Y.;Ahn, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.142-151
    • /
    • 1993
  • An intelligent mulitiple monitoring system to monitor tool/machining states synthetically was proposed and developed. It consists of 2 fundamental subsystems : the multiple sensor detection unit and the intellignet integrated diagnosis unit. Three signals, that is, spindle motor current, Z-axis motor current, and machining sound were adopted to detect tool/machining states more reliably. Based on the multiple sensor information, the diagnosis unit judges either tool breakage or degree of tool wear state using fuzzy reasoning. Tool breakage is diagnosed by the level of spindle/z-axis motor current. Tool wear is diagnosed by both the result of fuzzy pattern recognition for motor currents and the result of pattern matching for machining sound. Fuzzy c-means algorithm was used for fuzzy pattern recognition. Experiments carried out for drill operation in the machining center have shown that the developed system monitors abnormal drill/states drilling very reliably.

  • PDF

Design of Slide-Type Automatic Pallet Changer for M/C by Simulation (시뮬레이션을 통한 M/C용 공작물 자동교환장치의 설계)

  • Park, Hoo-Myoung;Jun, Jae-Uhk;Lee, Sang-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.6
    • /
    • pp.111-121
    • /
    • 2015
  • The objective of this study is to develop an automatic object changer unit to improve changing process problems existing in the conventional horizontal machining center. In order to perform this objective, an upward and downward traverse unit was designed. This unit consists of a motor, reducer, chain and sprocket wheel, and an upper and lower base. This automatic object changer unit performs a sliding contact motion in a purpose built and designed frame. Constraint conditions for the upward and downward traverse unit were first designed. Then, an operation mechanism was designed and introduced as the sum of the kinetic energy for the sprocket wheel and the upper and lower base and which was based on the moment of inertia, which is the kinetic energy of the converted upward and downward traverse unit in the side of the reducer. The paper covers the design of th e Automatic Pallet Changer for th e machining center.

A study on the adaptive control of process parameters using torque for end milling operation in machining center (Machining Center에서 End Millirh할 때 Torgue에 의한 가공변수의 적응제어에 관한 연구)

  • 박천령;윤문철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.6
    • /
    • pp.889-897
    • /
    • 1986
  • The purpose of this study is to describe the strategy of machining process suitable for developing adaptive control with constraint of NC-machine tool. The algorithm that controls machining process parameters of every sampling time is established for the constraint of torque in machinig center. To prove this AC algorithm, manual AC-unit control test is used for simulating the on-line AC strategy control. Also machining tests are carried out on a CNC-machining center fitted with the ACC system and compared with the simulated results. The practical effectiveness of the ACC systems so discussed and the reduction of machining time are demonstrated with reference to typical models of cutting workpieces. As a typical model, taper and step geometry model are selected. The computer simulation results have a good agreement with the experimental observation and make it possible to develope a NC-machine tool with an on-line ACC system.

A study on automatic selection of optimal cutting condition on machining in view of economics (기계가공시 분당가공비를 고려한 최적 절삭 조건에 관한 연구)

  • 이길우;이용성
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.113-126
    • /
    • 1992
  • Recently the multi-kind, small-amount manufacturing system has been replacing the mass manufacturing system, and domestic machining inustry also is eager to absorb the new technology because of its high productivity and cost reduction. The optimization of the cutting condition has been a vital problem in the machining industry, which would help increase the productivity and raise the international competitiveness. It is intended in this study to investigate the machining costs per unit time which is essential to the analysis of the optimal cutting condition, to computer the cutting speed that lead to the minimum machining costs and the maximum production to suggest the cutting speed range that enables efficient speed cutting, and to review the machining economy in relation to cutting depth and feed. Also considered are the optimal cutting speed and prodution rated in rrelation with feed. It is found that the minimum-cost cutting speed increases and the efficient cutting speed range is reduced as machining cost per unit time increases since the cutting speed for maximum production remains almost constant. The machining cost is also lowered and the production rate increases as the feed increases, and the feed should be selected to satisfy the required surface roughness. The machining cost and production rate are hardly affected by the cutting depth if the cutting speed stays below 100m/min, however, they are subject to change at larger cutting depth and the high-efficient speed range also is restricted. It can be established an adaptive optimal cutting conditions can be established in workshop by the auto-selection progam for optimal operation. It is expected that this method for choosing the optimal cutting conditions might contribute to the improvement of the productivity and reduced the cost. It is highly recommended to prepare the optimal cutting conditionthus obtained for future use in the programing of G-function of CNC machines. If proper programs that automatically select the optimal cutting conditions should be developed, it would be helpful to the works being done in the machine shops and would result in noticeable production raise and cost reduction.

  • PDF

Automated process plan and an intelligent NC data generation for unmaned machining of mould die (모울드 금형의 무인가공을 위한 자동공정계획 몇 지능형 NC 데이터 생성)

  • 유우식;김대현
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.19 no.40
    • /
    • pp.143-155
    • /
    • 1996
  • Presented in this paper are a CAPP(Computer Automated Process Planning) scheme and a generating method of intelligent NC data for unmaned machining of mold die. Mold die surfaces usually have free-formed geometry of complex shapes. So it is easy to overcut the die surface and to overload the cutting tools. It takes tens of hours to prepare process plans and to generate NC data for each processes. Therefore a classification of unit machining operation(UMO) for mold die manufacture, a backward recursive capp algorithm and a generating method of intelligent NC data are presented in this paper in order to provide a unmaned machining architecture of mold die.

  • PDF

A Study on the Design of Upward and Downward Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 1) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 상하 이송 기구 설계에 관한 연구(파트 1))

  • Park, Hoo-Myung;Kang, Jin-Kab;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-51
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. In order to perform this objective, a upward and downward traverse unit in which a unit that consists of a motor and reducer, chain and sprocket wheel, and upper and lower base employed in an automatic object changer unit performs sliding contact motion in a frame was designed. To achieve this design, constraint conditions for the upward and downward traverse unit first designed. Then, an operation mechanism was designed and that was introduced as a sum of kinetic energy for the sprocket wheel and upper and lower base based on the moment of inertia, which is the kinetic energy of the converted upward and downward traverse unit in the side of the reducer. In addition, The work required to rotate the converted upward and downward traverse unit in the side of the reducer by one revolution can be calculated using the sum of work that is required in the sprocket wheel and upper and lower base that is a part of the upward and downward traverse unit. Furthermore, the converted equation of motion in the side of the motor can be introduced using the equation of motion using the converted upward and downward traverse unit in the side of the motor. Then, Then, a proper motor can be determined using predetermined specifications employed in the motor and several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. Also, a design of a horizontal traverse unit that performs sliding motion on a upward and downward traverse unit and simulation that verifies the results of this design are required as a future study.

  • PDF

Development of a System for Selecting High-Quality Mold Manufacturing NC Data Using Evaluating the NC Data (NC 데이터 정량화를 통한 고품질 사출금형 NC 가공데이터 선정 방안)

  • Heo Eun-Young;Kim Bo-Hyun;Kim Dong-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.99-108
    • /
    • 2006
  • Since mold industries are regarded as belonging to three types of bad business, capable young people are reluctant to work in this field. The industries are hard to employ skilled workers who have much experience and knowledge On the mold manufacturing. Thus, effective CAM systems are required for unskilled workers to create process plans and NC data for the manufacturing, and process plans play important roles in the downstream manufacturing processes, such as NC machining, polishing, and final assembly. This study proposes a decision support system that facilitates unskilled workers to easily select high quality NC-data, as well as to increase productivity. The proposed system is assumed to follow a CAM operation scenario that consists of next three steps: 1) identifying several process plans and enumerating feasible unit machining operations (UMOs) from material and part surface information, 2) creating all feasible NC-data based on UMOs using a commercial CAM system, 3) selecting the best NC data among the feasible NC data using four screening criteria, such as machining accuracy, machining allowance, cutting load, and processing time. A case study on the machining of a camera core mold is provided to demonstrate the proposed system.

A Study on the Design of Horizontal Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 2) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 수평 이송 기구 설계에 관한 연구(파트 2))

  • Park, Hoo-Myung;Sung, Jae-Kyung;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.52-59
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. To achieve this goal, this study designed a horizontal transfer as the second project continued to the first project that designed a upward and downward traverse unit. A horizontal traverse unit shows a symmetric structure and consists of frame, which consists of four unit tools, motor and reducer, which are fixed at a frame, operation unit with pinions, first traverse unit, and second traverse unit. Constraint conditions based on the operation mechanism with these elements were configured and obtained following results after modeling a model for a traverse motor. In the kinematic expression of sliding motion with one degree of freedom, the sliding motion is constrained. Also, the rack 3 installed at a frame is used to configure possible kinematic constraint conditions of the rack 2 according to the rolling motion of the pinion 2 in the first traverse unit. In addition, the moment of inertia that is a type of kinetic energy in a converted horizontal traverse unit in the side of the reducer can be applied to introduce the moment of inertia of a converted horizontal traverse unit in the side of the reducer by using the sum of kinetic energy in the rack and pinion, which is a part of the horizontal traverse unit. Also, the equation of motion of the converted upward and downward traverse unit in the side of the motor using the equation of motion of the motor. Furthermore, the horizontal traverse unit predetermines the mass of the first and second traverse unit and applied load including the radius and reduction ratio of the pitch circle in the pinion 1 and applied load to the rack 2. Then, a proper motor can be determined using several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. In future studies later this study, a simulation that verifies the results of the previous two stages of studies using a finite element method.

  • PDF

Development of a decision support system for high quality NC data selection in mold manufacturing (고품질의 사출금형 NC 가공 데이터 선정을 위한 의사결정지원시스템 개발)

  • Heo, Eun-Young;Kim, Bo-Hyun;Kim, Dong-Won;Cho, Min-Ho
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2005.05a
    • /
    • pp.1101-1107
    • /
    • 2005
  • Mold industry has the difficulty to employ young people as the successors of the skilled workers, because it has been regarded as a 3D-jobs(dirty, difficult, and dangerous). To overcome this situation, thus, manufacturing technologies maintained in the factory should be systemized, and engineering systems should support unskilled workers to do their jobs without any difficulty. As a research of developing the supporting system, this study proposes a decision support system that facilitates unskilled workers to easily select high quality NC-data, as well as to increase productivity. The proposed system is assumed to follow a CAM operation scenario that consists of next three steps: 1) identifying several process plans and enumerating feasible unit machining operations (UMOs) from material and part surface information, 2) creating all feasible NC-data based on UMOs using a commercial CAM system, 3) selecting the best NC data among the feasible NC data using four screening criteria, such as machining accuracy, machining allowance, cutting load, and processing time. A case study on the machining of a camera core mold is provided to demonstrate the proposed system.

  • PDF