 공간적 토지이용 예측을 위한 모형화 연구

요지
본 연구의 목적이 토지자원의 효율적 개발과 관리를 위해 원격탐사 자료 및 지상자료를 이용하여 토지 이용의 예측 모형을 정립하고 실제로 제주도 지역에 적용하여 그 실증을 거치는 것이었다.
본 모형은 계절분석(multi-date processing) 및 다중분석(multi-file processing) 기법을 채택하고 Markov의 확률 이전 계산법 및 판별 함수(discriminant function) 계산법으로부터 합성 출현된 공간적/시간적 토지이용 분석방법을 채택하였다.
판별 함수 계산법은 토지이용 변화상의 최대 경향성을 산출하기 위해 제주도 경관 평면(landscape plane) 전지역의 각 화소(pixel)에 적용되고, 확률 이전 계산방법은 특정 미래 시간 간극상에서 상이한 토지이용으로 변하는 이들 화소의 수량을 결정한다.
본 합성 모형은 이렇게 토지이용 변화성(정성적)과 그 화소의 수량(정량적)을 결합하여 경관 평면상에서 미래의 토지이용 예측을 가능케하는 것이다.

1. 서론
토지 이용도 작성은 대체로 3가지 유형으로 분류될 수 있다. 1) 토지 이용 상황 파악, 2) 토지 이용 변화 파악, 3) 미래 토지 이용 예측이다.
토지 이용 변화를 다루는 논문들은 흔히 정량적 변화의 지역적(공간적) 변화성을 개별적으로 작성해내는 경향을 보였고 이 경향은 토지 이용의 미래 예측에 관해서도 마찬가지였다. 그런 중 정량적 확률 이전 모형과 판별함수에 의한 분석 모형을 합성한 공간적 토지이용 예측 모형 전략이 필연적으로 도출되었다. (Tom,C., et al., '78)
본 연구는 특정 시간 간극에서 정확한 토지 이용 변화 수량의 정보를 추는 토지 이용 경향 모형과 토지상의 각 위치에서 토지이용 변화상의 최대 확률치의 정보를 추는

* 시스템 공학연구소 연구부장

- 101 -
Fig. 1. Combination of Markov and Linear Discriminant Model for Improved Spatial-Change Prediction
<table>
<thead>
<tr>
<th>FROM</th>
<th>URBAN</th>
<th>BROAD</th>
<th>CROP</th>
<th>POSTURE</th>
<th>PADDY</th>
<th>OPEN</th>
<th>PERRAINAL</th>
<th>DENSE</th>
<th>SPARSE</th>
<th>BARREN</th>
<th>SEA</th>
<th>ROW TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>URBAN</td>
<td>2313</td>
<td>174</td>
<td>260</td>
<td>109</td>
<td>987</td>
<td>529</td>
<td>2611</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6983</td>
</tr>
<tr>
<td>BROAD</td>
<td>6387</td>
<td>2402</td>
<td>3224</td>
<td>457</td>
<td>2722</td>
<td>909</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16101</td>
</tr>
<tr>
<td>CROP</td>
<td>366</td>
<td>977</td>
<td>20176</td>
<td>1058</td>
<td>661</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27690</td>
</tr>
<tr>
<td>PASTURE</td>
<td>1471</td>
<td>961</td>
<td>7366</td>
<td>329</td>
<td>808</td>
<td>181</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11116</td>
</tr>
<tr>
<td>PADDY</td>
<td>330</td>
<td>612</td>
<td>7613</td>
<td>1058</td>
<td>4560</td>
<td>3036</td>
<td>1357</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18590</td>
</tr>
<tr>
<td>OPEN</td>
<td>675</td>
<td>3144</td>
<td>1557</td>
<td>1467</td>
<td>10483</td>
<td>7625</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26276</td>
</tr>
<tr>
<td>PERRAINAL</td>
<td>4168</td>
<td>867</td>
<td>2015</td>
<td>669</td>
<td>3942</td>
<td>4070</td>
<td>35231</td>
<td>1567</td>
<td>1760</td>
<td>1942</td>
<td></td>
<td>56231</td>
</tr>
<tr>
<td>DENSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>666</td>
<td>17077</td>
<td>2381</td>
<td>287</td>
<td></td>
<td></td>
<td></td>
<td>20411</td>
</tr>
<tr>
<td>SPARSE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>871</td>
<td>1084</td>
<td>344</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2299</td>
</tr>
<tr>
<td>BARREN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>755</td>
<td>235</td>
<td>1980</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2370</td>
</tr>
<tr>
<td>SEA</td>
<td></td>
<td>139003</td>
</tr>
<tr>
<td>COLUMN TOTAL</td>
<td>7852</td>
<td>11813</td>
<td>36571</td>
<td>15588</td>
<td>12441</td>
<td>24578</td>
<td>50867</td>
<td>18879</td>
<td>5225</td>
<td>4553</td>
<td></td>
<td>139003</td>
</tr>
</tbody>
</table>

Table 1. '75 - '81 change type matrix
선형 판별 모형을 향상하여 출현시킨 새로운 모형의 구조와, 실험 및 실증에 관하여 논한다.

2. 토지이용 예측모형의 개념들

하나의 특정한 토지이용은 분류시스템에서 한개의 종(class)으로 간주될 수 있는 것과 마찬가지로 하나의 특정한 토지이용 변화 역시 토지이용 변화의 분류시스템에서 한개의 종으로 간주될 수 있다.

본 연구에서는 1975년도 제주도 지역의 토지이용 현황과 그 6년후인 1981년도의 토지이용 현황간에 생긴 토지이용 변화의 종을 경향적으로 정의하고 분류 체계화 하였다.

그림 1에서 보이듯이 75년 토지이용 평면과 81년 토지이용 평면으로부터 단계적 판별분석을 거쳐 각화소의 토지이용 변화 최대 경향치를 알기위해 제주도 전지역에 최적 판별함수가 적용되었다.

Markov 경향 모형은 6년 시간 간극성에서 토지이용 변화 각 종의 비율을 마련해주는 한편 판별함수는 각 지역 화소의 토지이용 변화 각 종의 발생 확률 순서를 결정해준다. 임정 시간 간극성의 실제 변화는 전지역을 구성하는 전 화소의 변화종을 확률크기의 순서에 따라 Markov 경향 수량에 대응시키는 것이었다. 낮은 확률의 화소는 변화 없는 것으로 간주되었다. 이렇게 토지이용의 미래공간의 연차적 예측은 반복처리 과정을 거쳐 수행될 수 있었다.

3. ’81 토지이용 간측과 ’81 토지이용 예측치와의 비교 분석

’75년 토지이용 현황과 ’81년 토지이용 현황 공히 Landsat 위성 영상으로부터 작성되었다. 매년 토지이용 종의 가지수는 선형 판별함수에 의해 11개 범주로 분류되고 표에서 보이는 바와 같이 토지이용 변화의 종은 모두 51가지로 분류되었다.

任意 확률 이진행렬 $P = [P_{ij}]$의 비대각선상의 각 요소들은 주어진 시간 간극상에서 주어진 토지이용 상황으로부터 용도가 변화할 각 확률이다. 행렬에서 모든 행은 stochastic 벡터가, 즉 각행 요소의 합계는 1이라는 의미이다.

-104-
\[P_1 = \sum_{j=1}^{m} P_{1j} = 1 \]

Markov 연쇄 이전 확률 행렬에서는 초기상황에서 \(n \)단계 후 상황의 확률 벡터는 \([P_{n}]\) = \([P_r] \cdot [P]^n\) 이다.

본 연구에서 초기단계는 올림 표 1의 \(75 \sim 81\) 변화량의 행렬이다.

사후(posterior) 확률 순으로 정렬된 각 변화량의 확률들로부터 대응되는 수량만큼만 선정하여 \(81\)년도 토지 이용도 또는 \(87\)년도 토지이용도가 작성되었다.

4. \(87\)년도 토지이용 예측

공식 \([P_{n}] = [P_r] \cdot [P]^n\) 을 \(2\)차단계에 적용시켜 \([P_{2}] = [P_r] \cdot [P]^2\) 식으로 \(75 \sim 87\) 이전 행렬 계산이 가능하다. 전과 마찬가지 방법으로 정해진 수량의 확률을 선택하여 \(87\)년도 토지이용도를 작성할 수가 있었다.

5. 결론

본 연구에서는 과거의 Landsat 위성영상상을 사용하여 토지이용 예측의 방법론을 제시하였는데 본 방법론은 실제 향후의 토지이용 예측에 특달이 적용될 수 있다고 의의가 있다.

본 연구에서는 판별함수를 구성하기 위하여 단지 지질학적 요소만을 고려하였으나 차체에 GIS의 개념을 도입하면 교통, 사회 - 경제적인 제 변수를 판별함수 구성에 적용할 수가 있고 그러하면 토지이용도 작성의 정확도를 향상시킬 수가 있다.

본 연구에서는 Landsat MSS 위성영상 (지상 해상도 79m \(\times\) 57m) 을 사용하였으나 우리나라와 같이 규모가 작은 토지이용 상황에서는 TM 영상 (지상해상도 30m \(\times\) 30m) 또는 SPOT 영상 (MSS 지상해상도 20m \(\times\) 20m)이 보다 유리하다할 수 있었다. 그리고 본 방법론은 또한 농업, 산림, 수자원, 해양등의 제반 환경분야에 공히 적용될 수 있다는 데 의의가 크다고 할 수 있었다.

金義弘. 1984, 'A Study on Modeling of Spatial Land-use Prediction, 生産研究 Vol.36, No.8, 東京大学 生産技術研究所, pp. 20-23