생물축매를 이용한 고효율 바이오디젤 생산

손정훈
한국생명공학연구원

요 약

차세대 재생산성 에너지로 각광을 받고 있는 바이오디젤은 현재 주로 알칼리축매를 이용하는 화학공정으로 생산하고 있으나 고에너지 요구성이며 대규모 생산시 폐수발생 등 환경오염 유발요인이 있기 때문에 전환형 생물공정의 필요성이 대두되고 있다. 생물축매 리파제(lipase)를 이용하는 전환형 생물공정은 화학공정에 비해 다양한 장점을 제공하고 있으나 고가의 효소생산 비용문제로 실용화에 어려움이 있다. 따라서 본 연구에서는 저비용의 생물학적 바이오디젤 생산 시스템 구축을 위해 고활성의 효소 개발, 경제적 제조합 대량생산, 반복 재사용을 위한 효소고정화 등을 통해 고효율의 생산반응계를 개발하였다. 우선 바이오디젤 생산공정에 적합한 리파제로서 CalB(Lipase B of Candida antarctica)을 선택하고 분자 진화기술을 이용하여 효소활성을 17배 향상시킨 CalB14를 개발하였다. CalB14를 효모 발현시스템을 이용하여 경제적 대량생산하기 위해 단백질분비를 획기적으로 개선할 수 있는 맞춤형 분비융합인자기술(FTP technology)을 이용하여 제조합 CalB를 2 grams/liter 수준으로 분비생산하였다. 생산된 효소를 반복 재사용이 가능하도록 다양한 레진에 고정화하였고 최적의 바이오디젤 전환반응용 고정화 효소를 개발하였다. 고정화효소를 효율적으로 재사용하기 위해 바이오디젤 생산용 고정상반응기(packed-bed reactor)를 제작하였으며 기질을 12시간내에 95% 이상 바이오디젤로 수십회 이상 반복전환할 수 있는 경제적인 생물학적 바이오디젤 전환시스템을 구축하였다.

1. 서 론

1992년 리우 환경회의와 1997년 교토협약 이후 공해물질에 대한 규제와 이산화탄소 배출량 절감의무 등으로 인해 재생산성 순환 에너지원인 바이오 연료에 대한 관심이 증가되고 있다. 현재 실각한 공해를 유발시키는 디젤유에 대한 정청 대체연료인 바이오디젤(biodiesel)은 동, 식물성 기름(triacylglyceride, TG)이 메탄올(methanol)과 에스테르 반응 후 생성되는 메틸에스테르(methyl ester)(그림 1)이다. 기존의 석유계 경유
바이오디젤 생산 방법은 동 주로 화학적 촉매방법을 이용하고 있는데 1980년대에 서 KOH, K₂CO₃ 및 NaOH 등의 강염기를 이용한 비연속식 batch 에스테르 제조공정 을 이용하여 프랑스 노방스사 상용화 성공 연간 3만톤 생산하였다. 그러나 수산화물 균질촉매는 친수성이라 용해도가 낮고 반응성이 떨어 공정의 효율성이 낮은 단점 노출하였다. 오스트리아 연속식 교반반응기 (Continuous Stirred Tank Reactor)는 2개의 반응기를 직렬로 연결한 공정으로 제 1 반응기 공정은 동, 식물성 유지, 메타늘, 알칼리 촉매와 혼합하여 바이오디젤을 1차 합성 (수율 80%) 하고 제 2반응기 공정에서는 1차 제조된 바이오디젤에서 부산물을 제거 후 메타늘과 촉매를 재참가하여 2차 반응을 수행하여 97% 이상의 고순도 바이오디젤을 얻었다. 그 러나 이 경우에도 강력한 교반시설이 필요하며 과다한 장치비가 요구되었다. 이에 반 해 독일 Henkel사의 다단계 직렬식 관형반응기의 경우에는 친유성 촉매인 Sodium methoxide의 사용으로 반응액 중 촉매의 농도가 저하되는 것을 방지할 수 있으며 교 반장치가 없는 관형반응기를 사용함으로써 장치비가 절감되는 장점이 있다. 따라서 현재 미국과 유럽의 표준공정으로 채택되고 있다. 일본에서도 상기한 독일공정과 유사한 조건을 사용하나 NaOH를 촉매로 사용하고 있으며 특히 폐식용유를 메틸에스테르로
전환하는 공정을 개발하였다.

상기한 화학적 축대방법은 고 에너지성의 다단계 반응공정이 요구되고 축대 및 부산물의 회수가 어려울 뿐 아니라 다량의 폐수발생에 의한 2차 환경오염을 유발하는 등의 부작용이 있어 향후 대규모 바이오디젤의 수요를 충족할 수 있는 전환형 생물학적 신공정의 필요성이 대두되고 있다. 1996년 Nelson 등(Nelson et al, 1996)이 미생물 유래의 다양한 리파제를 이용하여 hexane 등의 solvent에서 77.8%의 바이오디젤이 생성됨을 보고하여 최초로 생물학적인 방법으로 바이오디젤 생산공정 가능성을 시사하였다. 생물학적인 효소공정(lipase-catalyzed process)은 기존 화학적인 방법(alkali-catalyzed process)에 비해 아래 표에 명기한 바와 같은 다양한 장점을 제공한다(표 1 참조).

| 표 1. 바이오디젤 생산을 위한 화학적 방법과 생물학적 방법의 비교 |
|-----------------|-----------------|
| | Alkali-catalyzed process | Lipase-catalyzed process |
| 반응 온도(C) | 60-70 | 30-40 |
| 원료내 자유지방산 | 비누화 반응 유발 | Methyl ester |
| 원료내 수분 (폐식유유) | 반응 역제 | 영향 없음 |
| Methyl ester 수용 | 보통 | 높음 |
| Glycerol 정제 | 복잡 | 용이 |
| Methyl ester 정제 | 반복 세척(폐수발생) | 불필요 |
| 축대 생산 단가 | 저렴 | 비교적 고가 |

포르먼에 리따체를 고정화한 상태로 전세포 생물 축대로 사용하는 방법도 개발되었다(Kondo et al., 2000; Matsumoto et al., 2002). 전자의 경우에는 리따체가 세포 내 발현이기 때문에 막 투과를 위한 단계(membrane permeabilization)가 필요한 문제점이 있었으며 두 경우 모두 반응액의 함수율에 따른 반응효율 저하 및 메타올에 의한 효소 불활성화나 세포 분해로 인한 활성감소 문제는 피할 수 없었다. 바이오디젤 생산을 위한 새로운 방법으로 메탄올 초음계 유체법을 이용하여 유체 용로부터 바이오디젤을 생성하는 방법이 개발되고 있으나 반응을 위해서 고온 (350도)과 고압(45Mpa)조건을 유지해야 하기 때문에 경제성이 낮아 상업화나 대규모 생산을 위해서는 아직 많은 연구가 필요할 것으로 예측되고 있다(Saka and Kusdiana, 2001).

2. 본론

가. 분자진화를 통한 리따체(CalB)의 개량

효모 Candida antarctica 유래의 리따체 B(CalB)는 문헌상에 보고된 바와 같이 기질과의 반응중 위치특이성이 없고 수분 존재하에서도 가수분해산물이 거의 없는 장점 때문에 본 연구에서도 바이오디젤 생산에 가장 적합한 효소로 선택하였다. 효율적인 바이오디젤 전환에 필요한 효소의 특성으로는 고활성 및 메탄올에 대한 저항성이 요구되므로 이러한 특성을 갖는 CalB를 개발하기 위해서 분자진화 방법을 사용하였다. Error-prone PCR 방법을 사용하여 무작위적인 변이도입을 유입한
CalB의 변이유전자 library를 제작하고 효모에 형질전환하여 약 1×10^4 개의 형질전환 균주 라이브러리를 구축하였다. 고활성 lipase 발현 균주의 선별을 위하여, 총 7,000 주에 대하여 활성을 측정한 결과, 23주의 활성 증가 변이주를 선별하였고, 이들 균주에 대하여 액체 배양을 실시하여 활성이 3배이상 증가한 변이주 2 종 (CalB14 및 CalB10)을 최종 선별하였다(그림 2). 두 변이단백질 CalB10과 CalB14를 효모에서 분비분리한 경우, CalB10이 야생형에 비하여 6 배 높은 활성을 가지는 것에 반해, CalB14는 17 배 더 높은 활성을 가지는 것을 확인할 수 있었으며 이러한 활성증가는 10%의 매탄올이 함유된 배지에서도 유지되었기 때문에 바이오디젤 반응용 효소로 적합할 것으로 예상되었다.

![그림 2: 분자진화를 통해 개량된 CalB 변이주의 활성비교]

나. 효모 분비시스템을 이용한 CalB14의 제조합 대량생산

개량 lipase인 CalB14를 제조합 대량생산하기 위하여 효모 *Saccharomyces cerevisiae* 발현 및 분비시스템을 이용하였다. 먼저 제조합 효모 *S. cerevisiae*에서 CalB14를 발현 및 분비하기 위하여 GAL promoter 및 공합이 유래의 α-amylase 분비시스템을 사용한 결과 활성의 배양조건(30℃)에서는 CalB의 분비생산성이 매우 낮았으나 이를 저온배양(22℃) 한 경우 약 0.8 g/liter의 CalB14를 분비생산할 수 있었다. 그러나 저온배양은 대규모 발효배양시 고비용이 요구되며 특히 하전기에는 배양이 불가능한 문제가 있기 때문에 적온배양(30℃)에서도 CalB14를 고효율 분비생산할 수 있는 기술개발이 요구되었다. 효모에서 단백질 분비효율 증진을 위해 개발된 단백질분비효율화전략(translational fusion partner, TFP 기술)기술을 이용하여 옴 CalB14를 고분비생산할 수 있는 시스템을 개발하였고 결과적으로 효모의 배양온도인 30℃에서 약 2 g/liter의 CalB14를 생산할 수 있었다(그림 3). 현재까지 전세계적으로 CalB를 제조합 대량생산하기 위한 다양한 시도에도 불구하고 산업효소분야의 다국적 독점기업인 Novo의 공급이 발현시스템이외에는 CalB의 효
율적으로 대량생산할 수 있는 기술이 없었으나 본 연구에서 효모를 이용하여 개량된 CalB14를 경제적으로 대량생산 할 수 있게 되었다. 제조용 CalB14 대량생산 균주는 scale-up 발효(500L 및 2.5톤)에서도 CalB14의 생산성은 유지되었으며 배지로 분비된 효소는 단순한 막여과(membrane filtration) 및 한의여과(ultrafiltration) 후 동결건조함으로써 효소생산 비용을 최소화하였다.

[그림 3 : 효모의 적응배양을 통한 CalB14의 대량분비 생산]

다. 바이오디젤 생산용 고정화촉매 개발

제조용 대량생산된 CalB14 고정화촉매 개발을 위해서 1차적으로 5종의 시판중인 resin에 고정화하였고 이들의 바이오디젤 전환효율을 비교하여 resin A를 선택하였다(그림 4, A). 그러나 resin A는 바이오디젤 전환반응이 우수하였지만 반드시 수분을 필요로 하는 문제가 있었고 이를 해결하기 위하여 추가적인 resin을 선별하여 바이오디젤 전환효율을 비교하였으며(그림 4, B) 최적의 resin으로 resin H를 선별하였다.
3종의 고정화효소(resin A, H 및 시판효소 Novozym 435)의 특성을 비교하기 위하여 바이오디젤 반응액 내 수분함량이 효소활성에 미치는 영향을 분석하였다(그림 5). 결과에서 보는 바와 같이 resin H는 1차 선별된 resin A가 활성을 위해서 5%의 수분 함량을 필요로 한 것과 달리 수분이 전혀 없어도 높은 전환율성을 보였으며 특이하게 수분함량 5% 이상에서도 강한 활성을 보였다. 이러한 신규 고정화효소(resin H)의 특성은 기존 Novozym 435는 수분 함유시 반응효율 감소하는 문제점을 해결할 수 있으며 수분이 전혀 없는 원료를 원료로 사용하는 경우 뿐만 아니라 폐식용유와 같은 어느정도의 수분이 함유된 원료를 사용할 때에도 유용할 것으로 판단된다.

라. 고정화효소 반응기를 이용한 바이오디젤 생산
고정화효소의 효율적인 재사용을 위해서 그림 6과 같은 바이오디젤 생산용 고정화효소 반응기(packed-bed reactor)를 제작하였다. 효소가 다공성의 결합실 내장
고정상반응기는 교반반응기(stirred-tank reactor) 사양시 고정화효소가 기계적인 힘에 의하여 분해되는 문제와 반응후 반응산물로부터 고정화효소 회수문제를 해결할 수 있는 장점을 제공한다. Resin A 및 H를 농도별(10% 및 20% w/v)로 효소 칼럼에 충전한 반응기를 이용하여 전환반응을 수행한 후 형성된 바이오디젤을 분석하였다(그림 7). 반응은 100 ml 규모로 수행하였으며 반응중 3단계 메탄올을 공급하였고 resin A 반응시에는 수분을 5% 첨가하였으며 resin H 반응에는 수분없이 진행하였다. 결과에서 보는 바와 같이 resin H의 경우에는 resin A에 비해 원통으로 빠른 반응속도와 높은 전환율을 보여 20% 효소 사용시 12시간에 96%의 바이오디젤 전환율을 보였다. 반응액의 TLC(thin-layer chromatography) 분석을 통해 12시간 후 가열한 TG가 대부분 바이오디젤로 전환된 것을 확인하였다. 이때 사용한 고정화효소는 25일간 25회의 반복사용을 통해서도 효소활성의 감소없이 높은 바이오디젤 전환율을 보임으로써 고가의 효소의 반복 재사용이 가능하였다.

[그림 6 : 바이오디젤 반응을 위한 고정상 반응기]

[그림 7 : 바이오디젤 전환율 및 반응산물의 TLC 분석]
2. 결론

본 연구를 통해 개발된 생물학적 성장 바이오디젤 생산기술은 아직 실험실 규모에서 가능성이 확인되었지만 향후 연속공정의 개발 및 대규모 실증연구를 통한 다면 현재 고에너지 요구성이며 대량생산시 환경오염 가능성이 높은 알칼리 축제를 이용하는 화학공정을 점진적으로 대체할 수 있을 것으로 전망된다. 특히 지금까지 생물학적 바이오디젤 생산기술의 실용화에 걸림돌인 효소생산비용과 이에 따른 바이오디젤 생산단가가 기존공정에 비해 높은 문제가 있어 왔으나 본 기술에서는 바이오디젤 생산에 적합한 고활성이 리파제를 개발하고 이를 제조합 효모를 이용하여 경제적 대량생산하였으며 효소고정화를 통해 반복 재사용함으로써 전반적인 바이오디젤 생산단가를 기존 효소공정(Novozym435 사용시) 대비 5-10% 수준으로 낮출 수 있었다. 이는 현재까지 알려진 효소공정 중 가장 낮은 비용이며 기존 알카리를 이용하는 화학공정 비용과도 경쟁이 가능한 수준이다. 따라서 본 연구를 통해서 개발된 효소를 이용하는 생물학적 바이오디젤 생산시스템은 추가적인 연구를 통해서 디젤엔진용 대체연료로서의 실용화가 가능할 것이며 향후 대규모의 바이오디젤 수요를 대비하여 환경오염 문제가 예상되는 화학공정을 대치할 수 있을 것으로 기대된다.

참고 문헌