영광주변해역 해양환경 특성에 관한 연구
조현서* · 조천래 · 박정채 · 강원영
전남대학교 수산해양대학 해양기술학부

A Study on the Water Quality and Sediment Environment around Younggwang Coast, Korea

Hyeon seo CHO, Chon Rae CHO, Jeong chae PARK, Won young KANG
Faculty of Marine Technology, College of Fisheries and Ocean Science,
Chonnam National University, Yeosu, 550-749, Korea

요 약: 서해 남동부에 위치한 영광주변해역의 해양환경의 특성을 파악하기 위해 2006년 3월 25일과 7월 26일에 영광지역의 15개 지점과 비교하기 위한 대조지역으로 변산반도 서쪽 주변해역의 10개 지점을 선정하여 조사하였다. 대조지역에는 수질측정결과 대체로 해수수질기준 Ⅰ등급 수준의 양호한 결과를 보였으며, 영광지역의 수질은 해수수질기준 Ⅲ등급으로 조사되었다. 수온의 경우 대조지역과 비교하여 중에는 4~5℃를 하계에는 2~3℃ 정도로 높은 것으로 조사되었다. 영광지역의 영양은 중계가 하계에 비해 높게 나타났으며, 해양 유속 특성을 보인 영광지역이 최적지역에 비해 두배가량 높은 부유물질량을 나타내었다. COD의 경우 영광지역은 평균 ⅡⅢ등급을 보였고, 대조지역은 평균 ⅠⅡ 등급수준으로 나타났다. 영광염의 경우 해수수질등급과 비교하면 총질소(TN)의 경우 영광지역은 중계가 하계에 유사하게 평균 Ⅱ등급의 수급을 보였으며, 대조지역은 중계에는 평균 Ⅰ등급의 수급을 하계에는 평균 Ⅱ등급의 수급을 보이는 것으로 나타났다. 인(TP)의 경우 동일한 시기에 측정한 농도분포로 지역별 차이는 보이지 않았고, 동일해역에서 하계에 상대적으로 높은 시기별 차이를 보였다. 국지적으로 Ⅲ등급의 수급을 보인 곳도 있지만 대조지역의 하계 벌꿀 투 вал 수수가 평균 Ⅲ등급의 수급을 나타낸 것을 제외하면 거의 모든 조사지역에 평균 Ⅱ등급의 농도를 나타내고 있었다.

핵심어: 영광, 견조, 해양수질환경, 해양조절환경

KEY WORDS: Younggwang Coast, Water quality, Sediment Environment

1. 서 론


2. 재료 및 방법

2.1 조사예기 및 조사 점정

본 조사는 2006년 3월 25일과 7월 26일에 영광부근 해역을 중심으로 해양환경 조사를 실시하고, 대조 해역으로서 변산반도 경포주변해역을 선정하여 해양환경의 특성을 비교 검토하였다. 대상지역 주변의 해양수질 현황을 파악하기 위하여 Fig. 1과 Fig. 2에서 보는 바와 같이 영광부근해역에서 15개 지점을 선정하였고, 대조 해역으로 변산반도 경포주변해역 10개 지점을 선정하였다. 해양수질의 경우 각 지점마다 표층수와 채층수를 Van Dorn 채층기를 사용하여 채수하였으며 채수한 샘플은 실험실로 운반 후 즉시 분석하였다. 지질설의 경우, 중력성 core 채니와 Van veen Grap을 이용 경질유리병에 채집하여 이스터스에 넣어 실험실로 운반 후 실험시까지 영광 20℃에서 냉동 보관하였다. 분석항목은 pH, 수
3. 결과 및 고찰

3.1 영양증해역의 수질환경

영양지역의 두 차례 조사결과를 조사간과 수용층을 구분하여 Table 2와 Table 3에 나타내었다.

Table 1. Analyzed items and methods

<table>
<thead>
<tr>
<th>Water</th>
<th>Sediment</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>IL</td>
</tr>
<tr>
<td>pH meter (pH=150)</td>
<td>Ignition loss</td>
</tr>
<tr>
<td>Salinity</td>
<td>COD Ignition loss</td>
</tr>
<tr>
<td>Salinometer (YSI 3200)</td>
<td>Alkaline Potassium Permanganate</td>
</tr>
<tr>
<td>DO</td>
<td>NO₃⁻-N</td>
</tr>
<tr>
<td>Winkler–Azide</td>
<td>Cu–Cd reduction column</td>
</tr>
<tr>
<td>SS</td>
<td>Diazo</td>
</tr>
<tr>
<td>GF/C weighting</td>
<td>NO₂⁻-N</td>
</tr>
<tr>
<td>COD</td>
<td>PO₄³⁻-P</td>
</tr>
<tr>
<td>Alkaline Potassium Persulfate oxidation</td>
<td>Molybden blue</td>
</tr>
<tr>
<td>T-N</td>
<td></td>
</tr>
<tr>
<td>Alkaline Potassium Persulfate oxidation</td>
<td></td>
</tr>
<tr>
<td>T-P</td>
<td></td>
</tr>
<tr>
<td>NH₄⁺-N</td>
<td></td>
</tr>
<tr>
<td>Indophenol</td>
<td></td>
</tr>
<tr>
<td>NO₃⁻-N</td>
<td></td>
</tr>
<tr>
<td>Diazo</td>
<td></td>
</tr>
<tr>
<td>NO₂⁻-N</td>
<td></td>
</tr>
<tr>
<td>Cu–Cd reduction column</td>
<td></td>
</tr>
<tr>
<td>PO₄³⁻-P</td>
<td></td>
</tr>
<tr>
<td>Molybden blue</td>
<td></td>
</tr>
<tr>
<td>Si(OH)₄Si</td>
<td></td>
</tr>
</tbody>
</table>

조사대역의 수온의 변동은 전반적으로 순계와 하계의 표층이 저층에 비해 높은 수온을 나타내었으며, 밀물시에 밀물시보다 높은 수온을 나타내었다. 순계 밀물시 영양지역의 4번 지점의 표층과 저층에서 각각 11.0°C와 10.2°C로 주변의 평균 수온보다 2°C이상 높은 수온을 나타내었고, 대조지역인 갱포주변과 비교하면 4°C~5°C차이를 보이고 있었다. 하계에는 밀물시 취수구와 인접한 3번 정점의 표층과 저층을 인접한 4번 정점의 저층에서 각각 26.80°C와 26.00°C로 주변해역의 평균 수온보다 1°C이상 높은 수온을 나타내었으며, 대조지역과 비교하면 2°C~3°C의 차이를 보였다. 영양은 순계에 비해 하계에염분 농도는 낮게 나타났으며, 영양지역이 대조지역에 비해 다소 높게 나타났다. 수소 이온농도는 밀물과 밀물시치저는 거의 없었으며 하계에 상대적으로 낮은 농도를 대조지역이 소폭 높은 것으로 조사되었다. 이러한 농도의 차이는 국지적인 담수의 유파이나 해수의 유효도가 일어날 수 있는 현상으로 통일선상에서 비교하기가 어렵다. 농수물질은 천연이며 해안선이 단조로운 지형적 원인을 반영하여 전반적으로 영양지역에서는 평균 약 40mg/L의 농도를 보였으며, 밀물시보다는 밀물시에 높은 것으로 나타났으며, 대조지역에서는 이보다 약 10~20mg/L 정도 낮은 값을 조사되었다.
<table>
<thead>
<tr>
<th>Parameters</th>
<th>March Ebb</th>
<th>Mean</th>
<th>March Flood</th>
<th>Mean</th>
<th>July Ebb</th>
<th>Mean</th>
<th>July Flood</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range</td>
<td></td>
<td>Range</td>
<td></td>
<td>Range</td>
<td></td>
<td>Range</td>
<td></td>
</tr>
<tr>
<td>Temp (℃)</td>
<td></td>
<td>6.70-11.00</td>
<td>7.87</td>
<td>6.80-8.50</td>
<td>7.51</td>
<td>24.80-26.80</td>
<td>25.66</td>
<td>25.00-27.10</td>
</tr>
<tr>
<td>Sal (psu)</td>
<td></td>
<td>6.30-10.00</td>
<td>7.53</td>
<td>6.80-8.20</td>
<td>7.34</td>
<td>23.20-26.00</td>
<td>24.28</td>
<td>23.40-25.30</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>31.80-32.30</td>
<td>32.14</td>
<td>31.90-32.10</td>
<td>32.01</td>
<td>30.40-31.20</td>
<td>30.83</td>
<td>30.30-30.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>31.90-32.20</td>
<td>32.04</td>
<td>31.90-32.30</td>
<td>32.15</td>
<td>30.70-31.20</td>
<td>30.92</td>
<td>30.80-31.20</td>
</tr>
<tr>
<td>SS</td>
<td></td>
<td>17.01-8.22</td>
<td>8.19</td>
<td>8.11-8.17</td>
<td>8.15</td>
<td>7.81-8.10</td>
<td>7.94</td>
<td>7.92-8.10</td>
</tr>
<tr>
<td>DO (mg/L)</td>
<td></td>
<td>17.30-4.53</td>
<td>47.24</td>
<td>21.43-161.71</td>
<td>76.83</td>
<td>17.00-35.57</td>
<td>24.89</td>
<td>22.14-76.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15.57-218.00</td>
<td>77.96</td>
<td>25.43-210.29</td>
<td>83.32</td>
<td>20.00-57.43</td>
<td>37.38</td>
<td>27.29-99.86</td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td></td>
<td>10.32-11.42</td>
<td>10.94</td>
<td>9.90-11.67</td>
<td>10.90</td>
<td>7.73-12.91</td>
<td>10.65</td>
<td>8.89-11.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.15-11.54</td>
<td>10.80</td>
<td>7.78-11.64</td>
<td>10.64</td>
<td>7.65-12.17</td>
<td>9.53</td>
<td>8.56-10.52</td>
</tr>
<tr>
<td>DIN (mg/L)</td>
<td></td>
<td>0.81-2.57</td>
<td>1.42</td>
<td>1.37-2.97</td>
<td>2.24</td>
<td>0.61-1.73</td>
<td>1.01</td>
<td>0.45-1.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.89-2.25</td>
<td>1.50</td>
<td>1.49-2.97</td>
<td>2.22</td>
<td>0.53-2.85</td>
<td>1.04</td>
<td>0.45-1.21</td>
</tr>
<tr>
<td>DIP (µg-at./L)</td>
<td></td>
<td>0.20-0.89</td>
<td>0.44</td>
<td>0.35-4.02</td>
<td>1.03</td>
<td>0.38-11.41</td>
<td>3.27</td>
<td>0.33-1.29</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45-1.08</td>
<td>0.73</td>
<td>0.28-1.05</td>
<td>0.65</td>
<td>0.46-9.93</td>
<td>2.96</td>
<td>0.40-1.61</td>
</tr>
<tr>
<td>Si(OH)₄-Si (µg-at./L)</td>
<td></td>
<td>1.41-6.90</td>
<td>3.20</td>
<td>2.24-6.61</td>
<td>4.11</td>
<td>4.65-18.56</td>
<td>10.31</td>
<td>5.27-10.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.25-4.24</td>
<td>2.15</td>
<td>1.20-7.82</td>
<td>4.12</td>
<td>5.70-17.31</td>
<td>9.61</td>
<td>5.58-12.74</td>
</tr>
<tr>
<td>TN (mg/L)</td>
<td></td>
<td>0.30-0.58</td>
<td>0.37</td>
<td>0.38-1.60</td>
<td>0.58</td>
<td>0.27-0.63</td>
<td>0.39</td>
<td>0.20-0.75</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.33-0.56</td>
<td>0.43</td>
<td>0.29-0.53</td>
<td>0.41</td>
<td>0.23-0.59</td>
<td>0.41</td>
<td>0.21-0.33</td>
</tr>
<tr>
<td>TP (µg/L)</td>
<td></td>
<td>0.028-0.043</td>
<td>0.035</td>
<td>0.024-0.044</td>
<td>0.033</td>
<td>0.034-0.061</td>
<td>0.049</td>
<td>0.030-0.057</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.026-0.042</td>
<td>0.033</td>
<td>0.025-0.050</td>
<td>0.039</td>
<td>0.042-0.067</td>
<td>0.047</td>
<td>0.036-0.065</td>
</tr>
</tbody>
</table>

용존산소소의 경우 영광주변해역에서 축계에 모든 조사단소에서 10mg/L 전후의 농도분포를 보였으며 대조지역에서는 약 1mg/L정도 낮은 농도값을 보였었다. 하지만 화웨에 국영지역의 경우 영광기역이 1mg/L정도 높은 것으로 조사되었다. 화학적 산소요구량의 경우 전반적으로 축계에 영광주변해역이 대조지역에서 밀봉터가 수중에 관계없이 수면에서 비해 높았으며, 축계에는 이와는 반대로 두 지역 모두에서 밀봉터가 더 높게 관찰되었다. 영광지역에서는 해양수질기준 II등급의 수질을 나타내었으며, 대조지역에서는 1등급의 수질을 나타내었다. 용존 무기질소(DIN)는 전 조사단소에서 수축관간에 걸쳐 수축관간 농도기는 거의 없었으며, 대조지역이 상대적으로 높은 농도분포를 보였고, 그 차이는 하계에 더 큰 것으로 나타났으며, 외부보다는 연안에서 높은 농도를 나타냈다. 용존 무기질소는 수축관 농도기는 거의 없었으며, 조사간에도 큰 차이가 보이지 않았다. 또한, 대조지역과 비교해서도 큰 차이를 보이지 않았지만, 조사시기 추계의 조사보다 더 높은 농도분포를 보였다. N/P 비는 축계에 대조지역의 농도표준치를 제외하고 거의 모든 지점에서 16.91와 같은 값을 나타내어 절대생물생장경합요소로 작용할 가능성이 있음을 나타내었으며, 하계에 대조지역은 같은 조사와 크게 다르지 않았지만, 대조지역에서는 16.00와 같은 값을 보이고 있어 매우 상반된 농도경향을 보였다. 규산수소의 변동 범위는 축계에서는 전 조사해역에서 5 µg-at./L 미만의 농도를 보였으나, 하계에는 영광지역에서는 10 µg-at./L 전후의 농도를 대조지역에서는 20 µg-at./L 전후의 농도분포를 나타내고 있어 지역인 차이가 크게 나타나는 것으로 조사되었다. 축 동조(TN)의 경우 축계에는 영광지역이 대조지역에 비해 약 2배 정도 높은 농도분포를 보였으나, 하계에는 지역간 차이가 보이지 않았다. 해양수질등급과 비교하면 영광지역은 축계와 하계에 유사하게 평균 II등급의 수질을 보였으며, 대조지역은 축계에는 평균 I등급의 수질을 하계에는 평균 II등급의 수질을 보이는 것으로 나타났다. 축 동조(TP)의 경우 동일한 시기에 유사한 농도분포로 지역별 차이가 보이지 않았고, 동일 해역에서 하계에 상대적으로 높은 시기별 차이를 보였다. 국지적으로 II등급의 수질을 보이는 곳도 있지만 대조지역의 하계 밀봉 표층수가 평균 III등급의 수질을 나타낸것을 제외하면 거의 모든 조사시기 평균 II등급의 농도를 나타내고 있었다.

3.2. 저질 환경
저질의 환경 특성에 대한 분석은 축계조사에서는 영광지역을 중심으로 실시하였고, 하계조사에서는 대조지역을 포함하여 조사를 실시하였다. 항목별 분석결과를 Table 3과 4에 나타내었다. 강얼막량(IW)은 큰 차이가 보이지 않았으나 하계에 다소 높은 값을 보였고 대조지역에 비해 영광지역의 값이 상대적으로 높게 조사되었다. 산화물화 황화물의 경우 축계에 영광지역의 거의 모든 지점과 하계에 대부분의 지점에서 수산 산물의 성장에 영향을 미치는 0.2 mg/g-dry(日本水産資源保 存協会, 1980)을 초과하는 것으로 나타났다. 영광의 2번과 8번 저질은 저질의 오염기준인 1 mg/g-dry(日本水産資源保存
Table 3. Ranges and mean values of analytical parameters in seawater of Geokpo

<table>
<thead>
<tr>
<th>Parameters</th>
<th>March Ebb</th>
<th>Range</th>
<th>Mean</th>
<th>March Flood</th>
<th>Range</th>
<th>Mean</th>
<th>July Ebb</th>
<th>Range</th>
<th>Mean</th>
<th>July Flood</th>
<th>Range</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temp (°C)</td>
<td>S</td>
<td>6.00-7.60</td>
<td>6.78</td>
<td>5.60-7.10</td>
<td>6.37</td>
<td>22.20-24.00</td>
<td>23.31</td>
<td>23.90-24.90</td>
<td>23.31</td>
<td>23.90-24.90</td>
<td>24.34</td>
<td></td>
</tr>
<tr>
<td>Sal (psu)</td>
<td>S</td>
<td>31.80-32.10</td>
<td>31.91</td>
<td>31.50-32.20</td>
<td>31.90</td>
<td>27.70-29.50</td>
<td>28.67</td>
<td>26.50-29.50</td>
<td>28.40</td>
<td>20.50-30.60</td>
<td>30.09</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>31.80-32.10</td>
<td>31.94</td>
<td>31.80-32.10</td>
<td>31.91</td>
<td>28.70-30.70</td>
<td>30.08</td>
<td>29.50-30.60</td>
<td>30.09</td>
<td>30.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>S</td>
<td>8.09-8.16</td>
<td>8.13</td>
<td>8.10-8.20</td>
<td>8.15</td>
<td>7.80-7.99</td>
<td>7.91</td>
<td>7.86-8.06</td>
<td>7.95</td>
<td>7.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS</td>
<td>S</td>
<td>14.57-46.71</td>
<td>34.11</td>
<td>13.29-36.86</td>
<td>22.30</td>
<td>16.43-43.00</td>
<td>27.29</td>
<td>14.43-32.14</td>
<td>23.74</td>
<td>20.71-47.57</td>
<td>35.57</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>14.29-40.29</td>
<td>25.23</td>
<td>10.29-41.00</td>
<td>22.08</td>
<td>16.71-34.43</td>
<td>26.96</td>
<td>20.71-47.57</td>
<td>35.57</td>
<td>20.71-47.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COD (mg/L)</td>
<td>S</td>
<td>0.49-0.89</td>
<td>0.69</td>
<td>0.73-1.73</td>
<td>1.25</td>
<td>0.59-1.03</td>
<td>0.75</td>
<td>0.71-1.39</td>
<td>1.07</td>
<td>0.71-1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.49-0.93</td>
<td>0.70</td>
<td>0.45-1.13</td>
<td>0.83</td>
<td>0.36-2.36</td>
<td>0.93</td>
<td>0.51-1.43</td>
<td>0.77</td>
<td>0.51-1.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIN (µmol/L)</td>
<td>S</td>
<td>0.69-1.92</td>
<td>1.29</td>
<td>0.58-1.29</td>
<td>0.79</td>
<td>0.77-5.47</td>
<td>3.56</td>
<td>1.34-10.70</td>
<td>5.47</td>
<td>1.34-10.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>1.14-1.79</td>
<td>1.39</td>
<td>0.57-1.40</td>
<td>1.00</td>
<td>3.22-7.29</td>
<td>5.43</td>
<td>3.86-7.73</td>
<td>6.76</td>
<td>3.86-7.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIP (µmol/L)</td>
<td>S</td>
<td>0.02-0.21</td>
<td>0.14</td>
<td>0.14-0.85</td>
<td>0.32</td>
<td>0.34-0.57</td>
<td>0.45</td>
<td>0.16-0.48</td>
<td>0.35</td>
<td>0.16-0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.18-0.29</td>
<td>0.17</td>
<td>0.12-0.41</td>
<td>0.24</td>
<td>0.23-0.40</td>
<td>0.34</td>
<td>0.30-0.50</td>
<td>0.39</td>
<td>0.30-0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si(OH)4-Si</td>
<td>S</td>
<td>3.03-4.45</td>
<td>3.67</td>
<td>1.31-5.77</td>
<td>2.37</td>
<td>16.63-24.59</td>
<td>19.25</td>
<td>17.19-23.36</td>
<td>19.59</td>
<td>17.19-23.36</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>2.81-5.75</td>
<td>4.13</td>
<td>1.85-5.20</td>
<td>3.16</td>
<td>5.96-23.74</td>
<td>18.62</td>
<td>17.05-26.08</td>
<td>20.14</td>
<td>17.05-26.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TN (mg/L)</td>
<td>S</td>
<td>0.26-0.46</td>
<td>0.31</td>
<td>0.20-0.41</td>
<td>0.27</td>
<td>0.21-0.43</td>
<td>0.33</td>
<td>0.12-0.43</td>
<td>0.31</td>
<td>0.12-0.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.19-0.25</td>
<td>0.22</td>
<td>0.21-0.25</td>
<td>0.23</td>
<td>0.21-0.44</td>
<td>0.32</td>
<td>0.27-0.46</td>
<td>0.37</td>
<td>0.27-0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP (mg/L)</td>
<td>S</td>
<td>0.022-0.045</td>
<td>0.035</td>
<td>0.026-0.050</td>
<td>0.032</td>
<td>0.038-0.093</td>
<td>0.052</td>
<td>0.009-0.061</td>
<td>0.047</td>
<td>0.009-0.061</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B</td>
<td>0.036-0.054</td>
<td>0.043</td>
<td>0.025-0.032</td>
<td>0.029</td>
<td>0.027-0.045</td>
<td>0.036</td>
<td>0.034-0.057</td>
<td>0.044</td>
<td>0.034-0.057</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. 결 론

4.1. 수질 환경의 특성

영양지역은 해안선의 단조로움으로 유속이 발라 떨어질까 부유물들의 부유가 인화되게 진행되는 것을 관찰할 수 있었으며 이로 인해 수질의 높은 농도의 SS가 측정되었다. 수온은 대조지역의 격포에 비해 영양지역이 녁운에는 4~5℃, 하계에는 2~3℃ 정도가 높은 것으로 조사되었는데 이러한 영향은 영양지역에 해체는 2~3℃ 정도가 높은 것으로 조사되었는데 이러한 영향은 영양지역에 위치한 안저리물만의 생활수에 의한 영향으로 보이지만 이러한 결과는 조(1995)에 의해서도 조사되었으며, 도수가 상대적으로 높은 해체에 기인한 차가 존재해 비례 크지 않은 것으로 조사되었다. 영양지역은 영양지역이 전 조사기간에 걸쳐 해수수질 기준 1° III등급으로 조사되었으며, 총계해 하계에 비해 상대적으로 높은 봉우수질을 보였다. 대조지역의 격포정화역의 경우 전 조사기간 동안 해수수질기준 1° III등급 수질을 보였으며, 영양지역에 비해 상대적으로 한 등급 정도 낮게 조사되었다. 물품상 무기염염류의 농도는 대조지역에 비해 영양지역이 상대적으로 높은 봉우수질을 보였으며, N/P 비는 총계해 대조지역의 격포정화역 지표와 거의 모든 지표에서 16 이하의 값은 내려와 있어 철소가 생물조성요소로 작용하는 가능성이 있음을 나타내었으며, 해체에 영양지역의 값은 총계개 크게 다르지 않았으나, 대조지역에서는 16부근의 값을 보이며 매우 상당한 봉우수질지를 보였다. 총합초와 총합초의 경우 총합초는 영양지역의 농도가 대조지역에 비해 높았고, 총합초의 경우 이는 반대로 대조지역에서 상대적으로 높은 것으로 조사되었다.
4.2. 저질 환경의 특성

강열감량의 경우 영광지역은 출계에 타지역의 농도에 비해 다소 낮은 농도특성을 보이고 있었으며, 하계에 상대적으로 높은 농도특성을 보이고 있었다. 또한, 조사지점별 농도차이는 크지 않았다. 산 휘발성 화학물(ASH)는 하계에 상대적으로 높게 나타났으며 대조지역에 비해 영광지역에서 더 높은 값으로 조사되었다. 화학적 산소소요량(COD)은 전 조사기간과 각 지역에서 저질의 부영양을 나타내는 기준치인 20 mg/L-dry (한국